
Hyperbola

Dcoder

1 Introduction
Hyperbola [6] is the latest challenge brought to us by nwert. The scheme is straightfor-
ward: it is a Nyberg-Rueppel signature [7] defined over the group of solutions (x, y) to
the equation

x2 − dy2 = 1 (mod p),

where p = 16831744095843413413 and d = 6731525366519611944. The base point
and public key are, respectively,

P = (12879847090741109435,11609566893283354662)

Q = (3839438711590932798, 9101041563847465056).

The group addition is given by

(x3, y3) = (x1x2 + dy1y2, x1y2 + x2y1),

along with the identity element O = (1, 0).
This curve is often known as the Pell conic [4, 5], named after the related Pell equa-

tion [3]. This is not an elliptic curve; its genus is 0 and we have two possible nontrivial
cases:

• d = a2 is a square modulo p, in which case the equation factors as (x−ay)(x+ay) =
1, and the group of solutions is isomorphic to F×

p , with order p− 1.

• d is not a square modulo p, in which case the group is isomorphic to the norm-1
subgroup of F×

p2 , which has order p+ 1.

The case here is the latter. We can solve the logarithm of P and Q directly, using rho,
or send the points to F×

p2 and solve there. While there are asymptotically fast algorithms
to solve logarithms in F×

p2 [1, 2], it is much quicker and easier to solve the logarithm
directly in the curve using parallel rho [8, 9], particularly given such a simple addition
rule. The complexity of solving it this way is around

√
π(p+ 1) ≈ 232 point additions,

which is fairly quick.
There is not much more to say about this challenge. There is one bug in the signa-

ture verification that limits the amount of valid signatures accepted to about half. The
verification process for Nyberg-Rueppel goes like this:

1

def verify(name, signature):
h = int(sha1(name).hexdigest()[0:16], 16)
c = int(signature[0:16], 16)
d = int(signature[17:], 16)
x, _ = point_add(point_mul(P, d), point_mul(Q, c))
return h % n == (c - x) % n

Since x is computed modulo p, it is larger than the order n = (p + 1)/2 about half
the time. Since it is not reduced modulo n prior to the subtraction with c, the modular
reduction fails and the signature is declared invalid. Therefore we must ensure that the
x coordinate of dP + cQ is smaller than n to work around this issue.

References
[1] Barbulescu, Razvan and Cécile Pierrot: The Multiple Number Field Sieve for Medium

and High Characteristic Finite Fields. http://hal.inria.fr/hal-00952610, Febru-
ary 2014.

[2] Gamal, Taher El: A subexponential-time algorithm for computing discrete logarithms
over GF(p2). IEEE Transactions on Information Theory, 31(4):473–481, 1985.

[3] Hendrik W. Lenstra, Jr.: Solving the Pell equation. Volume 44 of Mathematical Sci-
ences Research Institute Publications, pages 1–23. Cambridge University Press, Cam-
bridge, 2008, ISBN 978-0-521-80854-5. http://library.msri.org/books/Book44/
index.html.

[4] Lemmermeyer, F.: Conics — a Poor Man’s Elliptic Curves. ArXiv Mathematics e-
prints, November 2003. http://arxiv.org/abs/math/0311306.

[5] Menezes, Alfred and Scott A. Vanstone: A note on cyclic groups, finite fields, and the
discrete logarithm problem. Appl. Algebra Eng. Commun. Comput., 3:67–74, 1992.

[6] nwert: hyperbola. http://crackmes.de/users/nwert/hyperbola/, June 2014.

[7] Nyberg, Kaisa and Rainer A. Rueppel: A New Signature Scheme Based on the DSA
Giving Message Recovery. In Denning, Dorothy E., Raymond Pyle, Ravi Ganesan,
Ravi S. Sandhu, and Victoria Ashby (editors): ACM Conference on Computer and
Communications Security, pages 58–61. ACM, 1993, ISBN 0-89791-629-8.

[8] Oorschot, Paul C. van and Michael J. Wiener: Parallel Collision Search with Applica-
tion to Hash Functions and Discrete Logarithms. In Denning, Dorothy E., Raymond
Pyle, Ravi Ganesan, and Ravi S. Sandhu (editors): ACM Conference on Computer
and Communications Security, pages 210–218. ACM, 1994, ISBN 0-89791-732-4.

[9] Oorschot, Paul C. van and Michael J. Wiener: Parallel collision search with cryptan-
alytic applications. J. Cryptology, 12(1):1–28, 1999.

2

http://hal.inria.fr/hal-00952610
http://library.msri.org/books/Book44/index.html
http://library.msri.org/books/Book44/index.html
http://arxiv.org/abs/math/0311306
http://crackmes.de/users/nwert/hyperbola/

A Solution code
import sys
from hashlib import sha1
from random import randint

p = 0xE9965E13A7066DA5
d = 0x5D6B2EA7DBEEC228

P = (0xB2BE68B04CF8E2BB, 0xA11D77944E4A2826)
Q = (0x35486D2A7D42D13E, 0x7E4D65153B319860)
n = 0x74CB2F09D38336D3
x = 4300377673800084310

def point_add(P, Q):
x1, y1 = P
x2, y2 = Q
return ((x1*x2 + d*y1*y2)%p, (x1*y2 + x2*y1)%p)

def point_mul(P, e):
R = (1, 0)
m = 1 << 64
while m != 0:

R = point_add(R, R)
if m & e != 0:

R = point_add(R, P)
m >>= 1

return R

def verify(name, signature):
h = int(sha1(name).hexdigest()[0:16], 16)
c = int(signature[0:16], 16)
d = int(signature[17:], 16)
x, _ = point_add(point_mul(P, d), point_mul(Q, c))
return h % n == (c - x) % n

def sign(name):
h = int(sha1(name).hexdigest()[0:16], 16)
while True:

u = randint(1, n-1)
c = (point_mul(P, u)[0] + h) % n
d = (u - x*c)%n
if point_mul(P, (d + x*c)%n)[0] < n: # work around bug

break
return "%016X-%016X" % (c, d)

if len(sys.argv) != 2:
print "Usage: %s <name>" % sys.argv[0]
sys.exit(1)

s = sign(sys.argv[1])
assert(verify(sys.argv[1], s))
print s

3

	Introduction
	Solution code

