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1 Introduction
Hyperbola [6] is the latest challenge brought to us by nwert. The scheme is straightfor-
ward: it is a Nyberg-Rueppel signature [7] defined over the group of solutions (x, y) to
the equation

x2 − dy2 = 1 (mod p),

where p = 16831744095843413413 and d = 6731525366519611944. The base point
and public key are, respectively,

P = (12879847090741109435,11609566893283354662)

Q = (3839438711590932798, 9101041563847465056).

The group addition is given by

(x3, y3) = (x1x2 + dy1y2, x1y2 + x2y1),

along with the identity element O = (1, 0).
This curve is often known as the Pell conic [4, 5], named after the related Pell equa-

tion [3]. This is not an elliptic curve; its genus is 0 and we have two possible nontrivial
cases:

• d = a2 is a square modulo p, in which case the equation factors as (x−ay)(x+ay) =
1, and the group of solutions is isomorphic to F×

p , with order p− 1.

• d is not a square modulo p, in which case the group is isomorphic to the norm-1
subgroup of F×

p2 , which has order p+ 1.

The case here is the latter. We can solve the logarithm of P and Q directly, using rho,
or send the points to F×

p2 and solve there. While there are asymptotically fast algorithms
to solve logarithms in F×

p2 [1, 2], it is much quicker and easier to solve the logarithm
directly in the curve using parallel rho [8, 9], particularly given such a simple addition
rule. The complexity of solving it this way is around

√
π(p+ 1) ≈ 232 point additions,

which is fairly quick.
There is not much more to say about this challenge. There is one bug in the signa-

ture verification that limits the amount of valid signatures accepted to about half. The
verification process for Nyberg-Rueppel goes like this:
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def verify(name, signature):
h = int(sha1(name).hexdigest()[0:16], 16)
c = int(signature[0:16], 16)
d = int(signature[17:], 16)
x, _ = point_add(point_mul(P, d), point_mul(Q, c))
return h % n == (c - x) % n

Since x is computed modulo p, it is larger than the order n = (p + 1)/2 about half
the time. Since it is not reduced modulo n prior to the subtraction with c, the modular
reduction fails and the signature is declared invalid. Therefore we must ensure that the
x coordinate of dP + cQ is smaller than n to work around this issue.
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A Solution code
import sys
from hashlib import sha1
from random import randint

p = 0xE9965E13A7066DA5
d = 0x5D6B2EA7DBEEC228

P = (0xB2BE68B04CF8E2BB, 0xA11D77944E4A2826)
Q = (0x35486D2A7D42D13E, 0x7E4D65153B319860)
n = 0x74CB2F09D38336D3
x = 4300377673800084310

def point_add(P, Q):
x1, y1 = P
x2, y2 = Q
return ((x1*x2 + d*y1*y2)%p, (x1*y2 + x2*y1)%p)

def point_mul(P, e):
R = (1, 0)
m = 1 << 64
while m != 0:

R = point_add(R, R)
if m & e != 0:

R = point_add(R, P)
m >>= 1

return R

def verify(name, signature):
h = int(sha1(name).hexdigest()[0:16], 16)
c = int(signature[0:16], 16)
d = int(signature[17:], 16)
x, _ = point_add(point_mul(P, d), point_mul(Q, c))
return h % n == (c - x) % n

def sign(name):
h = int(sha1(name).hexdigest()[0:16], 16)
while True:

u = randint(1, n-1)
c = (point_mul(P, u)[0] + h) % n
d = (u - x*c)%n
if point_mul(P, (d + x*c)%n)[0] < n: # work around bug

break
return "%016X-%016X" % (c, d)

if len(sys.argv) != 2:
print "Usage: %s <name>" % sys.argv[0]
sys.exit(1)

s = sign(sys.argv[1])
assert( verify(sys.argv[1], s) )
print s
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