Primitive Math

Dcoder

1 Introduction

The “Primitive Math” challenge by promix17 [2] requires a number of different skills to
solve. It offers anti-debugging, function-level code encryption, a virtual machine and
some, well, primitive math.

The first thing this challenge does is unpack itself into 2 other binaries: Prim-
itive_Math.exe and svchost.exe. In what looks like a bad attempt at malware, the
svchost.exe binary, stored in the local temporary file directory, looks around for run-
ning OllyDBG and IDA processes, and tries to tamper with them in case it does. This is
easy to work around, and I will make no further mention of it. The Primitive_Math.exe
process is where the actual interesting code is, and where we are going to focus.

Most of the important functions are encrypted using an elementary xor cipher. They
are decrypted at runtime, using a preamble similar to the following:

loc_401819:
mov esi, offset byte_430724
mov edi, offset loc_401839
mov ecx, offset loc_4018A2
sub ecx, edi
loc_40182A:
db 3Eh
mov dl, [edil
db 3Eh
mov al, [esil]
Xor dl, al
db 3Eh
mov [edi], dl1
inc edi
inc esi

loop loc_40182A

One way to let the program decrypt itself completely is to take the re-encryption
step and re-purpose it to fill the encryption loop with 0x90. This way, the function is
decrypted once, and remains subsequently unhidden.

2 First blood

The first checks we are able to spot happen in the message handling function for the main
window, when the “Enter” button is pressed (starting at 40284D). In here, it is verified

’ Character ‘ Function ‘

Push input
Add
Subtract
Multiply
Divide
Sine
Cosine
Hyperbolic Sine
Hyperbolic Cosine
Exponentiate
Push digit

=z Q| Qv o Z| = 4

T
Ne)

Table 1: Serial characters and associated VM functions.

that the user name has at least 6 characters and the serial has 13. Further down, we find
some additional checks:

1. The first character of the serial must equal A’ +). u; mod 20, where w; is the ith
character of the username.

2. The second character of the serial must equal "A’ + 21122 s; mod 20, where s; is the
1th digit of the serial.

3. The 12th character of the serial must equal 0" + >, (u; @) mod 1(]

4. Let | X| be the number of distinct 'X’ characters in the serial. Then, 6 - |X| =1
(mod 11).

5. Let |P| and |A| be the number of distinct 'P’ and ’A’ characters in the serial,
respectively. Then, (|X|+ |P| + |A])? mod 256 = 16.

The 5th check’s solution, 16, was found by trial and error: this result is used to
decrypt the next serial check. Since there are only so many possible squares and values
to test, finding it was quite straightforward.

3 Push a Push Pop

Once we get the basic checks out of the way, we get to the main course, starting at address
4018B0. Here we find a nice twist: the serial’s characters are used as instructions in a
basic stack-based floating-point VM, not unlike x87!

This VM is quite simple, and only performs basic arithmetic functions. Table [1] lists
the serial characters and respective instructions executed in the VM.

The program now uses the VM, which executes a function f(z) directly from the
serial, to verify the following identity:

@&y means xor.

flite)—fli—¢
2€

= g(x), i€{0,1,...,9},
where € = 1 x 10~7 and

@ VE+ 2587 coohsinzvE)
z) = | coszvx cosh(sin z+v/x).
g NG
If you know a thing or two about Calculus (if not, cf. [I, 3]), you'll immediately notice
that g(x) must be the derivative of f(z) for the identity to hold (for arbitrarily small e,

mind you). Thus, f(z) can be given by the anti-derivative (or indefinite integral) of g(x),
namely

flz) = /g(x)dx = sinh(y/xsinz) + C, C eR.

This function can be implemented in the challenge’s VM quite easily, with the sequence
12DXWXSPGCA. We do not control C, for it is dependent on the user name. But it nicely
maps to the addition of an arbitrary constant C' to the anti-derivative, as shown in
the above equation. Notice, also, how rules 4 and 5 of Section [2| are respected, since
6 x 2mod 11 =1 and (2 + 1+ 1)? mod 256 = 16.

Finally, the program checks the identity

% Qlo(f(%) - C)J < z) mod 256 = 39,

1=0

thus ensuring that the correct function f(x) has been used.

References

[1] Hardy, G. H.: A Course of Pure Mathematics. Cambridge University Press, 10th edi-
tion, 1967, ISBN 0521092272.

[2] promix17: Primitive Math. http://crackmes.de/users/promix17/primitive_
math/, March 2011.

[3] Spivak, Michael: Calculus. Publish or Perish, 3rd edition, 1994, ISBN 0914098896.

http://crackmes.de/users/promix17/primitive_math/
http://crackmes.de/users/promix17/primitive_math/

A Full solution code

#include <stdvo.h>
#include <stdlib.h>
#include <string.h>

int crcl(char *str, int len)
{
int i,h;
for(i=0,h=0; i < len; ++i)
h += strl[i];
return h%20+’A°;
}

int crc2(char *str, int len)
{
int i,h;
for(i=0,h=0; i < len; ++i)
h += str[i] =~ i;
return h%10;
}

int main(int argc, char **xargv)

{
char seriall[16] = {0};
int i, h ;

if(arge != 2)

{
printf ("Usage: %s <username>\n", argv[0]);
return -1;

}

sprintf (serial, "12DXWXSPG%dA", crc2(argv[1], strlen(argv[1]1)));
printf ("Y%chcks\n", crcl(argv[i], strlen(argv[1])), crci(serial, strlen(serial)), serial);

return O;

	Introduction
	First blood
	Push a Push Pop
	Full solution code

