
Bit Operations

Bit Shifting & Rotation

Bit Counting

Specials

Transactional 
Memory

Comparisons

String Compare

Overview

Each intrinsic is only available on machines which support the 
corresponding instruction set. This list depicts the instruction sets 
and the first Intel and AMD CPUs that supported them.

The following data types are used in the signatures of the intrinsics. 
Note that most types depend on the used type suffix and only one 
example suffix is shown in the signature.

Most intrinsics are available for various suffixes which depict different 
data types. The table depicts the suffixes used and the corresponding 
SSE register types (see Data Types for descriptions). 

Arithmetics

Miscellaneous

Register I/O

Misc I/O

Conversions

Reinterpet CastsPacked Conversions

Single Element Conversion

Bit Masking

Selective Bit Moving

Boolean Logic

Bit Compare

Float Compare

Composite Arithmetics

Basic Arithmetics

Sign 
Modification

Compwosite Int ArithmeticsDot Product

Div/Sqrt/Reciprocal

Rounding

Byte Manipulation

Byte Movement

Load

Store

Fused Multiply and Add

Addition / Subtraction

Multiplication
Fences

Unaligned Load

Aligned Load

Storing data from an SSE register into memory or registers

Unaligned Store

Aligned Store

Special Algorithms

Byte Zeroing

Byte Shuffling Change the byte order using a control mask

Set Register

Mix Registers

Broadcast

Absolute

abs

Add

add

Add with 
Saturation

adds

Alternating Add 
and Subtract

addsubSSE3
SSE2SSE2

SSSE3

Bool AND

and
si128,ps[SSE],pd

epi8-32

epi8-64,ps[SSE]/d,

ss[SSE]/d

epi8-16,epu8-16 ps/d

ps/d Packed single float / packed double float
epiX Packed X bit signed integer
epuX Packed X bit unsigned integer

ss/d

Single single float/double float, remaining bits 
copied. Operations involving these types often 
have different signatures: An extra input register 
is used and all bits which are not used by the 
single element are copied from this register. The 
signatures are not depicted here; see manual for 
exact signatures. 

siX

Single X bit signed integer. If there is a si128 
version, the same function for 256 bits is usually 
suffixed with si256.

Bool NOT AND

andnot
si128,ps[SSE],pd

Blend

blend[v]
SSE4.1

epi8-16,

epi32[AVX2],ps/d

mi blend_epi16
(mi a,mi b,ii imm)
FOR j := 0 to 7
 i := j*16

 IF imm[j]
  dst[i+15:i] := b[i+15:i]
 ELSE
  dst[i+15:i] := a[i+15:i]

NOTE: blendv uses 128bit 
mask, blend uses 
immediate

Byteshift
left/right
[b]sl/rliSSE2

si128,epi128[256]

md cvtsi64_sd(md a,i64 b)
double(b[63:0]) |
(a[127:64] << 64)

128bit Cast

castX_YSSE2

si128,ps/d

NOTE: Reinterpret casts 
from X to Y. No operation is 
generated.

Round up 
(ceiling)

ceilSSE4.1

ps/d,ss/d

Cache Line 
Flush
clflushSSE2

-

NOTE: Flushes cache line 
that contains p from all 
cache levels

Float 
Compare

cmp[n]Z
ps/d,ss/d

SSE2

Compare Not 
NaN
cmp[un]ord

ps/d,ss/d

NOTE: For each element pair 
cmpord sets the result bits 
to 1 if both elements are not 
NaN, otherwise 0. 
cmpunord sets bits if at 
least one is NaN.

SSE2

Old Float/Int 
Conversion

cvt[t]_X2YSSE

pi↔ps,si↔ss

NOTE: Converts X to Y. 
Converts between int and 
float. p_  versions convert 2-
packs from b and fill result 
with upper bits of operand 
a. s_ versions do the same 
for one element in b. 
The t version truncates 
instead of rounding and is 
available only when 
converting from float to int.

Sign Extend

cvtX_Y

epi8-32

NOTE: Sign extends each 
element from X to Y. Y must 
be longer than X.

SSE4.1

S/D/I32 
Conversion

cvt[t]X_Y

epi32,ps/d

NOTE: Converts packed 
elements from X to Y. If pd is 
used as source or target 
type, then 2 elements are 
converted, otherwise 4.
The t version is only 
available when casting to int 
and performs a truncation 
instead of rounding.

SSE2

Zero Extend

cvtX_Y

epu8-32 → epi8-32

NOTE: Zero extends each 
element from X to Y. Y must 
be longer than X.

SSE4.1

Compare 
Single Float

[u]comiZ
ss/d

SSE2

NOTE: Z can be one of:
eq/ge/gt/le/lt/neq
Returns a single int that is 
either 1 or 0. The u version 
does not signal an exception 
for QNaNs and is not 
available for 256 bits!

NOTE: Z can be one of:
ge/le/lt/gt/eq
The n version is a not 
version, e.g., neq computes 
not equal. Elements that 
compare true receive 1s in 
all bits, otherwise 0s.

Single Conversion 
to Float with Fill

cvtX_Y

si32-64,ss/d → ss/d

NOTE: Converts a single 
element in b from X to Y. 
The remaining bits of the 
result are copied from a.

SSE2

Single Float to 
Int Conversion

cvt[t]X_Y

ss/d → si32-64

NOTE: Converts a single 
element from X (int) to Y 
(float). Result is normal int, 
not an SSE register!
The t version performs a 
truncation instead of 
rounding.

Single 128-bit 
Int Conversion

cvtX_Y

si32-128

NOTE: Converts a single 
integer from X to Y. Either of 
the types must be si128. If 
the new type is longer, the 
integer is zero extended.

SSE2

Single SSE Float 
to Normal Float 

Conversion
cvtX_Y

ss→f32,sd→f64

NOTE: Converts a single SSE 
float from X (SSE Float type) 
to Y (normal float type). 

SSE2SSE

Div

divSSE2

ps/d,ss/d

Conditional 
Dot Product

dp
ps/d

NOTE: Computes the dot 
product of two vectors. A 
mask is used to state which 
components are to be 
multiplied and stored.

m dp_ps(m a,m b,ii imm)
FOR j := 0 to 3
 IF imm[4+j]
  tmp[i+31:i] :=
   a[i+31:i] * b[i+31:i]

 ELSE
  tmp[i+31:i] := 0

sum[31:0] := 
tmp[127:96] + tmp[95:64] 
+ tmp[63:32]+ tmp[31:0]

FOR j := 0 to 3
 IF imm[j]
  dst[i+31:i] :=sum[31:0]
 ELSE
  dst[i+31:i] := 0

SSE4.1

Round down 
(floor)
floorSSE4.1

ps/d,ss/d

Horizontal 
Add
hadd

epi16-32,ps/d

SSSE3

NOTE: Adds adjacent pairs of 
elements

Horizontal Add 
with Saturation

hadds
epi16

SSSE3

NOTE: Adds adjacent pairs of 
elements with saturation

Horizontal 
Subtract

hsub
epi16-32,ps/d

SSSE3

NOTE: Subtracts adjacent 
pairs of elements

Horizontal Subtract 
with Saturation

hsubs
epi16

SSSE3

NOTE: Subtracts adjacent pairs 
of elements with saturation

Insert

insert
epi16[SSE2],

epi8-64,ps

mi insert_epi16
(mi a,i i,ii p)
dst[127:0] := a[127:0]
sel := p[2:0]*16

dst[sel+15:sel]:=i[15:0]

NOTE: Inserts an element i 
at a position p into a. 

SSE4.1

Fast Load 
Unaligned 

lddqu
si128

NOTE: Loads 128bit integer 
data into SSE register. Is 
faster than loadu if value 
crosses cache line boundary. 
Should be preferred over 
loadu. 

SSE3

Load Fence

lfence
-

NOTE:  Guarantees that every 
load instruction that 
precedes, in program order, 
is globally visible before any 
load instruction which follows 
the fence in program order.

SSE2

Broadcast 
Load
load1

pd,ps

NOTE:  Loads a float from 
memory into all slots of the 
128-bit register.
For pd, there is also the 
operation loaddup in SSE3 
which may perform faster 
than load1.

SSE2

Load Aligned

load
pd,ps,si128

NOTE:  Loads 128 bit from 
memory into register. 
Memory address must be 
aligned!

SSE2

Load Single 

load
ss,sd,epi64

NOTE:  Loads a single 
element from memory and 
zeros remaining bytes. For 
epi64, the command is 
loadl_epi64!

SSE2

Load 
High/Low

loadh/l
pd,pi

NOTE:  Loads a value from 
memory into the high/low 
half of a register and fills the 
other half from a.

SSE2

md loadl_pd(md a,d* ptr)
dst[63:0] :=*(ptr)[63:0]
dst[127:64] := a[127:64]

Load Reversed

loadr
pd,ps

NOTE:  Loads 128 bit from 
memory into register. The 
elements are loaded in 
reversed order. Memory 
must be aligned!

SSE2

m loadr_ps(f* ptr)
dst[31:0]:=*(ptr)[127:96]
dst[63:32]:=*(ptr)[95:64]
dst[95:64]:=*(ptr)[63:32]
dst[127:96]:=*(ptr)[31:0]

Load 
Unaligned

loadu
pd,ps,si16-si128

NOTE:  Loads 128 bit or less 
(for si16-64 versions) from 
memory into the low-bits of 
a register.

SSE2

Multiply and 
Horizontal Add

madd
epi16

SSSE3

NOTE: Multiply 16-bit ints 
producing a 32-bit int and 
add horizontal pairs with 
saturation producing 
4x32-bit ints

SSE3

Multiply and 
Horizontal Add

maddubs
epi16

NOTE: Adds vertical 8 bit ints 
producing a 16 bit int and 
adds horizontal pairs with 
saturation producing 8x16 bit 
ints. The first input is treated 
as unsigned and the second as 
signed. Results and 
intermediaries are signed.

Masked Store 

maskmoveu

si128

NOTE:  Stores bytes into 
memory if the corresponding 
byte in mask has its highest 
bit set.

SSE2

v maskmoveu_si128

(mi a,mi mask,c* ptr)

Memory Fence 
(Load & Store)

mfence
-

NOTE: Guarantees that 
every memory access that 
precedes, in program order, 
the memory fence 
instruction is globally visible 
before any memory 
instruction which follows the 
fence in program order.

SSE2

Monitor 
Memory
monitor

-

NOTE: Arm address 
monitoring hardware using 
the address specified in p. A 
store to an address within the 
specified address range 
triggers the monitoring 
hardware. Specify optional 
extensions in e, and optional 
hints in h.

SSE3

v monitor(v* ptr,u e,u h)

Move Element 
with Fill

move
ss[SSE],sd

NOTE:  Moves the lowest 
element from first input and 
fills remaining elements 
from second input

SSE2
SSE

m move_ss(m a,m b)

a[31:0] | b[127:32]

Zero High

move
epi64

NOTE:  Moves lower half of 
input into result and zero 
remaining bytes.

SSE2

mi move_epi64(mi a)

a[63:0]

Move 
High↔Low
movelh/hl

ps

NOTE:  The lh version 
moves lower half of b into 
upper half of result. Rest is 
filled from a. The hl version 
moves upper half to lower 
half.

m movehl_ps(m a,m b)

64-bit 
Broadcast

movedup
pd

NOTE:  Duplicates the lower 
half of a.

md movedup_pd(md a)

a[0:63]|(a[63:0]<<64)

32-bit Broadcast 
High/Low
movel/hdup

ps

NOTE:  Duplicates 32bits into 
the lower 64bits of the 
result. l version duplicates 
bits [31:0], h version 
duplicates bits [63,32].

SSE3

SSE3

SSE

Movemask

movemask
epi8,pd,ps[SSE]

NOTE:  Creates a bitmask 
from the most significant bit 
of each element.

SSE2

i movemask_epi8(mi a)

Sum of Absolute 
Differences 2

sadbwSSE4.1

epu8

NOTE: Compute the sum of 
absolute differences (SADs) of 
quadruplets of unsigned 8-bit 
integers in a compared to those 
in b, and store the 16-bit results. 
Eight SADs are performed using 
one quadruplet from b and eight 
quadruplets from a. One 
quadruplet is selected from b 
starting at on the offset specified 
in imm. Eight quadruplets are 
formed from sequential 8-bit 
integers selected from a starting 
at the offset specified in imm.

mi sadbw_epu8
(mi a,mi b,ii imm)
 a_offset := imm[2]*32
 b_offset := imm[1:0]*32

 FOR j := 0 to 7
  i := j*8
  k := a_offset+i
  l := b_offset

  dst[i+15:i] := 
ABS(a[k+7:k]-b[l+7:l])+
ABS(a[k+15:k+8]-b[l+15:l+8])+                       
ABS(a[k+23:k+16]-b[l+23:l+16])+                       
ABS(a[k+31:k+24]-b[l+31:l+24])

Mul

mulSSE2

epi32[SSE4.1],epu32,

ps/d,ss/d

suX Single X bit unsigned integer in SSE register

SSE

NOTE: epi32 and epu32 
version multiplies only 2 ints 
instead of 4!

Mul Low

mullo
SSE2

epi16,epi32[SSE4.1]

NOTE: Multiplies vertically 
and writes the low 16/32 
bits into the result.

SSE4.1

Mul High

mulhiSSE2

epi16,epu16

NOTE: Multiplies vertically 
and writes the high 16bits 
into the result.

Mul High with 
Round & Scale

mulhrs
epi16

NOTE: Treat the 16-bit 
words in registers A and B as 
signed 15-bit fixed-point 
numbers between −1 and 1 
(e.g. 0x4000 is treated as 0.5 
and 0xa000 as −0.75), and 
multiply them together.

SSSE3

Monitor Wait

mwait
-

NOTE: Hint to the processor 
that it can enter an 
implementation-dependent-
optimized state while waiting 
for an event or store 
operation to the address 
range specified by MONITOR.

SSE3

Get MXCSR 
Register

getcsr
-

NOTE: Get the content of the 
MXCSR register.

SSE

Bool OR

or
si128,ps[SSE],pd

SSE2
SSE

SSE2
SSE

SSE2
SSE

Pack With 
Saturation

pack[u]s

epi16,epi32

NOTE: Packs ints from two 
input registers into one 
register halving the bitwidth. 
Overflows are handled using 
saturation. The u version 
saturates to the unsigned 
integer type.

SSE2

Pause

pauseSSE2

-

NOTE: Provide a hint to the 
processor that the code 
sequence is a spin-wait loop. 
This can help improve the 
performance and power 
consumption of spin-wait 
loops.

Prefetch

prefetch
-

NOTE: Fetch the line of data 
from memory that contains 
address ptr to a location in 
the cache heirarchy specified 
by the locality hint i.

SSE

Approx.
Reciprocal

rcp
ps,ss

SSE

Round

roundSSE4.1

ps/d,ss/d

NOTE: Rounds according to a 
rounding paramater r.

Approx. 
Reciprocal Sqrt

rsqrt
ps,ss

SSE

NOTE: Approximates 1.0/sqrt(x)

Sum of Absolute 
Differences

sad
epu8

NOTE: Compute the absolute 
differences of packed 
unsigned 8-bit integers in a 
and b, then horizontally sum 
each consecutive 8 
differences to produce two 
unsigned 16-bit integers, and 
pack these unsigned 16-bit 
integers in the low 16 bits of 
64-bit elements in dst.

SSE2

Replicate

set1
epi8-64x,ps[SSE]/d

NOTE:  Broadcasts one input 
element into all slots of an 
SSE register.

SSE2

Set

set
epi8-64x,

ps[SSE]/d,ss/d,

m128/m128d/i[AVX]

NOTE:  Sets and returns an 
SSE register with input 
values. E.g., epi8 version 
takes 16 input parameters. 
The first input gets stored in 
the highest bits. For epi64, 
use the epi64x suffix.

SSE2

Set MXCSR 
Register

setcsr
-

NOTE: Set the MXCSR register 
with a 32bit int.

SSE

Set Reversed

setr
epi8-64x,ps[SSE]/d,

m128/m128d/i[AVX]

NOTE:  Sets and returns an SSE 
register with input values. The 
order in the register is 
reversed, i.e. the first input 
gets stored in the lowest bits. 
For epi64, use the epi64x 
suffix.

SSE2

Zero Register

setzero

ps[SSE]/d,si128

NOTE:  Returns a register 
with all bits zeroed.

Store Fence

sfence
-

NOTE:  Guarantees that every 
store instruction that 
precedes, in program order, is 
globally visible before any 
store instruction which follows 
the fence in program order.

SSE

Byte Shuffle

shuffle
epi8

NOTE:  Shuffle packed 8-bit 
integers in a according to 
shuffle control mask in the 
corresponding 8-bit element 
of b, and store the results in 
dst.

mi shuffle_epi8(mi a,mi b)
FOR j := 0 to 15
 i := j*8

 IF b[i+7] == 1
  dst[i+7:i] := 0
 ELSE
  k := b[i+3:i]*8

  dst[i+7:i]:= a[k+7:k]

SSSE3

Dual Register 
Float Shuffle

shuffle
ps[SSE],pd

NOTE:  Shuffles floats from 
two registers. The lower part 
of the result receives values 
from the first register. The 
upper part receives values 
from the second register. 
Shuffle mask is an 
immediate!

md shuffle_pd
(md a,md b,ii i)
dst[63:0]:= (i[0] == 0) ? 
   a[63:0] : a[127:64]

dst[127:64]:= (i[1] == 0) ?
   b[63:0] : b[127:64]

SSE2
SSE

32-bit Int 
Shuffle
shuffle
epi32

NOTE:  Shift input register 
left/right by i bytes while 
shifting in zeros. There is no 
difference between the b 
and the non-b version. 

mi shuffle_epi32(mi a,ii i)
S(s, mask){

 CASE(mask[1:0])
  0: r := s[31:0]
  1: r := s[63:32]
  2: r := s[95:64]
  3: r := s[127:96]

 RETURN r[31:0]
}

dst[31:0]:=S(a,i[1:0])
dst[63:32]:=S(a,i[3:2])
dst[95:64]:=S(a,i[5:4])
dst[127:96]:=S(a,i[7:6])

SSE2

High / Low 
16bit Shuffle

shufflehi/lo

epi16

NOTE:  Shuffles the high/low 
half of the register using an 
immediate control mask. 
Rest of the register is copied 
from input. 

mi shufflehi_epi16
(mi a,ii i)
dst[63:0] := a[63:0]
dst[79:64] := 
(a >> (i[1:0]*16))[79:64]

dst[95:80] := 
(a >> (i[3:2]*16))[79:64]

dst[111:96] := 
(a >> (i[5:4]*16))[79:64]

dst[127:112] := 
(a >> i[7:6]*16))[79:64]

SSE2

Conditional 
Negate or Zero

signSSSE3

epi8-32

NOTE: For each element in a 
and b, set result element to 
a if b is positive, set result 
element to -a if b is 
negative or set result 
element to 0 if b is 0. 

Logic Shift 
Left/Right
sl/rl[i]SSE2

epi16-64

NOTE: Shifts elements left/
right while shifting in zeros. 
The i version takes an 
immediate as count. The 
version without i  takes the 
lower 64bit of an SSE 
register.

Square Root

sqrtSSE2

ps/d,ss/d

SSE

Arithmetic 
Shift Right

sra[i]SSE2

epi16-64

NOTE: Shifts elements right 
while shifting in sign bits. 
The i version takes an 
immediate as count. The 
version without i  takes the 
lower 64bit of an SSE 
register.

m addsub_ps(m a,m b)
FOR j := 0 to 3
 i := j*32

 IF (j is even) 
  dst[i+31:i] := 
   a[i+31:i] - b[i+31:i]

 ELSE
  dst[i+31:i] :=
   a[i+31:i] + b[i+31:i]

See also: Conversion to int 
performs rounding implicitly

Broadcast 
Store
store1

pd,ps[SSE]

NOTE:  Stores a float to 128-
bits of memory replicating it 
two (pd) or four (ps) times. 
Memory location must be 
aligned!

SSE2
SSE

Aligned Store

store
si128,pd,ps[SSE],

si256[AVX]

NOTE:  Stores 128-bits into 
memory. Memory location 
must be aligned!

SSE2
SSE

Single Element
 Store
store[l]

ss[SSE],sd,epi64

NOTE:  Stores the low element 
into memory. The l version 
must be used for epi64 and 
can be used for pd.

SSE2
SSE

v store_sd(d* ptr,md a)

Store High

storeh
pd

NOTE:  Stores the high 64bits 
into memory.

SSE2

v storeh_pd(v* ptr,m a)

Aligned Reverse
 Store
storer

pd,ps[SSE]

NOTE:  Stores the elements 
from the register to memory 
in reverse order. Memory 
must be aligned!

SSE2
SSE

v storer_pd(d* ptr,md a)

Unaligned 
Store
storeu

si16-128,pd,ps[SSE],

si256[AVX]

NOTE:  Stores 128 bits (or 
less for the si16-64 versions) 
into memory.

SSE2
SSE

v storeu_pd(v* ptr,m a)

Stream Load

stream_load

si128,si256[AVX]

NOTE:  Loads 128 bit from 
memory into register. 
Memory address must be 
aligned! Memory is fetched 
at once from an USWC 
device without going 
through the cache hierachy. 

SSE2

Aligned 
Stream Store

stream
si32-128,pd,ps[SSE],

si256[AVX]

NOTE:  Stores 128-bits (or 32-
64) for si32-64 integer a 
into memory using a non-
temporal hint to minimize 
cache pollution. Memory 
location must be aligned!

SSE2
SSE

v stream_si32(i* p,i a)

v stream_si128(mi* p,mi a)

Subtract

sub

Subtract with 
Saturation

subsSSE2
epi8-64,ps[SSE]/d,

ss[SSE]/d epi8-16,epu8-16

SSE SSE

SSE2
SSE

i testc_si128(mi a,mi b)
ZF := ((a & b) == 0)
CF := ((a & !b) == 0)

RETURN CF;

Test And Not/
And
testc/z

si128[SSE4.1],

si256,ps/d

NOTE: Compute the bitwise 
AND of 128 bits in a and b, and 
set ZF to 1 if the result is zero, 
otherwise set ZF to 0. 
Compute the bitwise AND NOT 
of a and b, and set CF to 1 if 
the result is zero, otherwise 
set CF to 0. The c version 
returns CF and the z version 
ZF. For 128 bit, there is also 
test_all_zeros which does 
the same as testz_si128.

SSE4.1

i  test_mix_ones_zeros
(mi a,mi b)
ZF := ((a & b) == 0)
CF := ((a & !b) == 0)
RETURN !CF && !ZF;

Test Mix Ones 
Zeros

test_ncz

si128[SSE4.1],

si256,ps/d

NOTE: Compute the bitwise 
AND of 128 bits in a and b, 
and set ZF to 1 if the result is 
zero, otherwise set ZF to 0. 
Compute the bitwise AND 
NOT of a and b, and set CF to 
1 if the result is zero, 
otherwise set CF to 0. Return 
!CF && !ZF. For 128 bit, 
there is also the operation 
test_mix_ones_zeros which 
does the same.

SSE4.1

i test_all_ones(mi a)

(~a) == 0

Test All Ones

test_all_ones

-

NOTE: Returns true iff all bits 
in a are set. Needs two 
instructions and may be 
slower than native 
implementations.

SSE4.1

Interleave 
(Unpack)
unpackhi/lo

epi8-64,ps[SSE],pd

NOTE: Interleaves elements 
from the high/low half of 
two input registers into a 
target register. 

SSE2

mi unpackhi_epi32(mi a,mi b)
dst[31:0]  := a[95:64] 
dst[63:32] := b[95:64] 
dst[95:64] := a[127:96] 
dst[127:96]:= b[127:96] 

Bool XOR

xor
si128,ps[SSE],pd

SSE2
SSE

mi andnot_si128(mi a,mi b)

!a & b

+S
0

0

+

+

ABS(a-b)

+S

+S

+S

*

+S
*

*

*
+S

... ...

...

...

AVX2

Broadcast 
Load
broadcast

ss/d,ps/d

NOTE:  Broadcasts one input 
(ss/d) element or 128bits 
(ps/d) from memory into all 
slots of an SSE register. All 
suffixes but ss are only 
available in 256 bit mode!

AVX

Broadcast

broadcastX

epi8-64,ps/d,si256

NOTE:  Broadcasts the 
lowest element into all slots 
of the result register. The 
si256 version broadcasts one 
128bit element! The letter X 
must be the following:
epi8: b, epi16: w, epi32: d, 
epi64:q, ps: s, pd: d, 
si256: si128

AVX2

128/256bit 
Cast
castX_Y

pd128↔pd256,

ps128↔ps256,

si128↔si256

NOTE: Reinterpret casts 
from X to Y. If cast is from 
128 to 256 bit, then the 
upper bits are undefined! No 
operation is generated.

AVX

256

256bit Cast

castX_Y

ps,pd,si256

NOTE: Reinterpret casts 
from X to Y. No operation is 
generated.

AVX

256

Compare

cmp

ps/d,ss/d

NOTE: Compares packed or 
single elements based on 
imm. Possible values are 0-31 
(check documentation). 
Elements that compare true 
receive 1s in all bits, 
otherwise 0s.

AVX

128128

128

128128 128 128

Gather

i32/i64gather

epi32-64,ps/d

NOTE:  Gather elements from 
memory using 32-bit/64-bit 
indices. The elements are 
loaded from addresses 
starting at ptr and offset by 
each 32-bit/64-bit  element in 
a (each index is scaled by the 
factor in s). Gathered 
elements are merged into dst. 
s should be 1, 2, 4 or 8. The 
number of gathered elements 
is limited by the minimum of 
the type to load and the type 
used for the offset.

AVX2

mi i64gather_epi32
(i* ptr,mi a,i s)
FOR j := 0 to 1;
 i := j*32
 m := j*64

 dst[i+31:i] := 
   *(ptr + a[m+63:m]*s])

dst[MAX:64] := 0

Mask Gather

mask_i32/i64gather

epi32-64,ps/d

NOTE:  Same as gather but 
takes an additional mask and 
src register. Each element is 
only gathered if the highest 
corresponding bit in the mask 
is set. Otherwise it is copied 
from src.

AVX2

mi mask_i64gather_epi32
(mi src,i* ptr,mi a,
 mi mask,i32 s)
FOR j := 0 to 1; 
 i := j*32
 m := j*64

 IF mask[i+31]
  dst[i+31:i]:=
      *(ptr+a[i+63:i]*s)
  mask[i+31] := 0

 ELSE
  dst[i+31:i] := 
      src[i+31:i]
mask[MAX:64] := 0

dst[MAX:64] := 0

256bit Insert

insertf128
si256,ps/d

m insertf128_ps
(m a,m b,ii i)
dst[255:0] := a[255:0]
sel := i*128

dst[sel+15:sel]:=b[127:0]

NOTE: Inserts 128bit at a 
position specified by i. For 
AVX2, there is only si256 
and the operation is named 
inserti128.

AVX2
AVX

256

128

128128

128

128

128bit Pseudo 
Gather
loadu2

m128,m128d,m128i

NOTE:  Loads two 128bit 
elements from two memory 
locations.

AVX

256

m128,
m128d,

m128i

AVX sometimes uses this suffix for 128bit float/
double/int operations. SEQ!

m loadu2_m128(f* p1,f* p2)
dst[127:0] = *p2;
dst[255:128] = *p1;

SEQ!

Mask Load

maskload
ps/d,epi32-64[AVX2]

NOTE:  Loads from memory 
if the highest bit for each 
element is set in the mask. 
Otherwise 0 is used. ptr 
must be aligned!

AVX

mi maskload_epi64
(i64* ptr,mi mask)
dst[MAX:128] := 0
FOR j := 0 to 1
 i := j*64

 IF mask[i+63]
  dst[i+63:i]:= *(ptr+i)
 ELSE
  dst[i+63:i]:= 0

AVX2

SEQ!

SEQ!

Masked Store 

maskstore

ps/d,epi32-64[AVX2]

NOTE:  Stores bytes from a 
into memory at p if the 
corresponding byte in the 
mask m has its highest bit 
set. Memory must be 
aligned!

v maskstore_ps(f* p,mi m,m a)

128

AVX2
AVX

128 128

Float Shuffle

permute[var]

ps/d

NOTE:  128-bit version is the 
same as int shuffle for floats. 
256-bit version performs the 
same operation on two 128-
bit lanes. The normal version 
uses an immediate and the 
var version a register b (the 
lowest bits in each element 
in b are used for the mask of 
that element in a).

AVX

m permutevar_ps(m a,mi b)

4x64bit 
Shuffle
permute4x64

epi64,pd

NOTE:  Same as float shuffle 
but no [var] version is 
available. In addition, the 
shuffle is performed over the 
full 256 bit instead of two 
lanes of 128 bit.

md permute4x64_pd(md a,ii i)

128-bit Dual 
Register Shuffle

permute2f128

ps/d,si256

NOTE:  Takes 2 registers and 
shuffles 128 bit chunks to a 
target register. Each chunk 
can also be cleared by a bit 
in the mask. For AVX2, there 
is only the si256 version 
which is renamed to 
permute2x128.

AVX

md permute2f128_pd
(md a,md b,ii i)
S(s1, s2, control){

 CASE(control[1:0])
 0: tmp[127:0]:=s1[127:0]
 1: tmp[127:0]:=s1[255:128]
 2: tmp[127:0]:=s2[127:0]
 3: tmp[127:0]:=s2[255:128]

 IF control[3]
  tmp[127:0] := 0 

 RETURN tmp[127:0]
}

dst[127:0]  :=S(a,b,i[3:0])
dst[255:128]:=S(a,b,i[7:4])
dst[MAX:256]:=0

256

AVX2

256

8x32bit 
Shuffle
permutevar8x32

epi32,ps

NOTE:  Same as 4x64 bit 
shuffle but with 8x32bit and 
only a [var] version taking a 
register instead of an 
immediate is available.

256
AVX2

AVX2

SEQ!

AVX

SEQ!SEQ!

AVX

Variable Logic 
Shift
sl/rlv

epi32-64

NOTE: Shifts elements left/
right while shifting in zeros. 
Each element in a is shifted 
by an amount specified by 
the corresponding element 
in b.

AVX2

Variable 
Arithmetic Shift

sl/rav
epi32-64

NOTE: Shifts elements left/
right while shifting in sign 
bits. Each element in a is 
shifted by an amount 
specified by the 
corresponding element in b.

AVX2

SEQ! 128128

128

SEQ!

128

128bit Pseudo
Scatter
storeu2

m128,m128d,m128i

NOTE:  Stores two 128bit 
elements into two memory 
locations.

AVX

256SEQ!

v storeu2_m128
(f* p,f* q,m a)
*p = dst[127:0];
*q = dst[255:128];

128

AVX AVX

Get Undefined 
Register
undefined

ps/d,si128-256

NOTE:  Returns an SSE 
register with undefined 
contents.

AVX

Zero All 
Registers

zeroall
-

NOTE:  Zeros all SSE/AVX 
registers.

AVX

256

Zero High All 
Registers
zeroupper

-

NOTE:  Zeros all bits in 
[MAX:256] of all SSE/AVX 
registers.

AVX

256

String Compare 
Mask
cmpi/estrm

ps/d,ss/d

NOTE: Compares strings a and 
b and returns the comparsion 
mask. If _SIDD_BIT_MASK is 
used, the resulting mask is a 
bit mask. If _SIDD_UNIT_MASK is 
used, the result is a byte mask 
which has ones in all bits of 
the bytes that do not match. 

SSE4.2

Data Type Suffixes

Each operation has an i and an e version. The i version compares 
all elements, the e version compares up to specific lengths la and 
lb. The immediate value i for all these comparisons consists of 
bit flags. Exactly one flag per group must be present:

String Compare 
Index
cmpi/estri

ps/d,ss/d

NOTE: Compares strings in a 
and b and returns the index 
of the first byte that 
matches. Otherwise Maxsize 
is returned (either 8 or 16 
depending on data type).

SSE4.2

String 
Compare
cmpi/estrc

ps/d,ss/d

NOTE: Compares strings in a 
and b and returns true iff the 
resulting mask is not zero, 
i.e., if there was a match.

SSE4.2

String 
Nullcheck
cmpi/estrs/z

ps/d,ss/d

NOTE: Compares two strings 
a and b and returns if a (s 
version) or b (z version) 
contains a null character.

SSE4.2

i cmpistrs(mi a,mi b,ii i)
i cmpestrs
(mi a,i la,mi b,i lb,ii i)

String Compare 
with Nullcheck

cmpi/estra

ps/d,ss/d

NOTE: Compares strings in a 
and b and returns true iff the 
resulting mask is zero and 
there is no null character in b.

SSE4.2

cmpistrX(mi a, mi b, ii i)

cmpestrX(mi a, i la, mi b, i lb, ii i)

_SIDD_UBYTE_OPS unsigned 8-bit chars
_SIDD_UWORD_OPS unsigned 16-bit chars
_SIDD_SBYTE_OPS signed 8-bit chars
_SIDD_SWORD_OPS signed 16-bit chars

_SIDD_CMP_EQUAL_ANY
For each character c in a, determine 
iff any character in b is equal to c.

_SIDD_CMP_RANGES
For each character c in a, determine 
whether b0 <= c <= b1 or b2 <= c <= b3…

_SIDD_CMP_EQUAL_EACH

Check for string equality of a and b_SIDD_CMP_EQUAL_ORDERED

Search substring b in a. Each byte where 
b begins in a is treated as match.

_SIDD_POSITIVE_POLARITY Match is indicated by a 1-bit.
_SIDD_NEGATIVE_POLARITY Negation of resulting bitmask.

_SIDD_MASKED_NEGAT

IVE_POLARITY

Negation of resulting bitmask 
except for bits that have an index 
larger than the size of a or b.

Data type specifier

Compare mode specifier

Polarity specifier

Cyclic Redundancy
  Check (CRC32)

crc32

u8-u64

NOTE: Starting with the initial 
value in crc, accumulates a 
CRC32 value for unsigned X-
bit integer v, and stores the 
result in dst.

SSE4.2

uX Single X bit unsigned integer (not in SSE register)

CLMUL

CLMUL

SSE4.2

Westmere 10

Carryless Mul

clmulepi64
si128

NOTE: Perform a carry-less 
multiplication of two 64-bit 
integers, selected from a 
and b according to imm, and 
store the results in dst 
(result is a 127 bit int).

Convert Float
16bit  ↔ 32bit 

cvtX_Y

ph ↔ ps

NOTE: Converts between 4x 
16 bit floats and 4x 32 bit 
floats (or 8 for 256 bit 
mode). For the 32 to 16-bit 
conversion, a rounding mode 
r must be specified.

ph Packed half float (16 bit float)

CVT16

m cvtph_ps(mi a)

mi cvtps_ph(m a, i r)

AES Decrypt 

aesdec[last]

si128

NOTE: Perform one round of 
an AES decryption flow on the 
state in a using the round 
key. The last version 
performs the last round.

AES

u crc32_u32(u crc,u v)

128

≤64128

AES Encrypt 

aesenc[last]

si128

NOTE: Perform one round of 
an AES encryption flow on the 
state in a using the round 
key. The last version 
performs the last round.

AES

mi aesenc_si128(mi a,mi key)

128

AES Inverse Mix 
Columns 

aesimc

si128

NOTE: Performs the inverse 
mix columns transformation 
on the input.

AES

mi aesimc_si128(mi a)

128

AES KeyGen 
Assist
aeskeygenassist

si128

NOTE: Assist in expanding the 
AES cipher key by computing 
steps towards generating a 
round key for encryption cipher 
using data from a and an 8-bit 
round constant specified in i.

AES

mi aeskeygenassist_si128

(mi a,ii i)

128

Extract Bits

_bextr
u32-64

BMI1

≤64

NOTE: Extracts l bits from a 
starting at bit s.

u64 _bextr_u64(u64 a,u32 s,u32 l)

(a >> s) & ((1 << l)-1) Bit Scan 
Forward/Reverse

_bit_scan_forward
/reverse

(i32)

≤64

NOTE: Returns the index of 
the lowest/highest bit set in 
the 32bit int a. Undefined if 
a is 0.

i32 _bit_scan_forward(i32 a)

Byte Swap

_bswap[64]
(i32,i64)

x86

≤64

NOTE: Swaps the bytes in 
the 32-bit int or 64-bit int.

i64 _bswap64(i64 a)

x86

Find Lowest 
1-Bit
_blsi

u32-64

BMI1

≤64

NOTE: Returns an int that 
has only the lowest 1-bit in a 
or no bit set if a is 0.

u64 _blsi_u64(u64 a)

(-a) & a

Mask Up To 
Lowest 1-Bit

_blsmsk
u32-64

BMI1

≤64

NOTE: Returns an int that 
has all bits set up to and 
including the lowest 1-bit in 
a or no bit set if a is 0.

u64 _blsmsk_u64(u64 a)

(a-1) ^ a

Reset Lowest 
1-Bit
_blsr

u32-64

BMI1

≤64

NOTE: Returns a but with 
the lowest 1-bit set to 0.

u64 _blsr_u64(u64 a)

(a-1) & a

Zero High Bits

_bzhi
u32-64

BMI2

≤64

NOTE: Zeros all bits in a 
higher than and including 
the bit at index i.

u64 _bzhi_u64(u64 a, u32 i)

dst := a

IF (i[7:0] < 64)

 dst[63:n] := 0

Rotate Left/
Right

_[l]rot[w]l/r

(u16-64)

x86

≤64

NOTE: Rotates bits in a left/
right by a number of bits 
specified in i. The l version 
is for 64-bit ints and the w 
version for 16-bit ints.

u64 _lrotl(u64 a)

Count Leading 
Zeros
_lzcnt

u32-64

LZCNT

≤64

NOTE: Counts the number of 
leading zeros in a.

u64 _lzcnt_u64(u64 a)

Bit Gather
(Extract)

_pext
u32-64

BMI2

≤64

NOTE: Extract bits from a at 
the corresponding bit 
locations specified by mask 
m to contiguous low bits in 
dst; the remaining upper 
bits in dst are set to zero.

u64 _pext_u64(u64 a, u64 m)

Bit Scatter
(Deposit)

_pdep
u32-64

BMI2

≤64

NOTE: Deposit contiguous 
low bits from a to dst at 
the corresponding bit 
locations specified by mask 
m; all other bits in dst are 
set to zero.

u64 _pdep_u64(u64 a,u64 m)

Count 1-Bits 
(Popcount)

popcnt
u32-64

POPCNT

≤64

NOTE: Counts the number of 
1-bits in a.

u32 popcnt_u64(u64 a)

Count Trailing 
Zeros
_tzcnt

u32-64

BMI1

≤64

NOTE: Counts the number of 
trailing zeros in a.

u64 _tzcnt_u64(u64 a)

FM-Add

f[n]maddFMA

ps/d,ss/d

NOTE: Computes (a*b)+c 
for each element. The n 
version computes -(a*b)+c.

FM-Sub

f[n]maddFMA

ps/d,ss/d

NOTE: Computes (a*b)-c 
for each element. The n 
version computes -(a*b)-c.

m fmadd_ps(m a,m b,m c) m fmsub_ps(m a,m b,m c)

FM-AddSub

fmaddsubFMA

ps/d,ss/d

NOTE: Computes (a*b)+c 
for elements with even index 
and (a*b)-c for elements 
with odd index.

mi mullo_epi16(mi a,mi b)

FM-SubAdd

fmsubaddFMA

ps/d,ss/d

NOTE: Computes (a*b)-c 
for elements with even index 
and (a*b)+c for elements 
with odd index.

m fmsubadd_ps(m a,m b,m c)

v sfence()

v lfence()

v mfence()

mi stream_load_si128
(mi* ptr)

md load_pd(d* ptr)

md loadu_pd(d* ptr)

mi lddqu_si128(mi* ptr)
md load1_pd(d* ptr)

md load_sd(d* ptr)

mi aesdec_si128(mi a,mi key)

mi abs_epi16(mi a)

mi sign_epi16(mi a,mi b)

mi sllv_epi32(mi a,mi b)mi slav_epi32(mi a,mi b)

mi srai_epi32(mi a,ii32 i)

mi sra_epi32(mi a,mi b)

mi slli_epi32(mi a,ii i)

mi sll_epi32(mi a,mi b)

i comieq_sd(mi a,mi b)md cmp_pd(md a,md b,ii imm)
md cmpord_pd(md a,md b)

md cmpeq_pd(md a,md b)

md round_pd(md a,i r)

md floor_pd(md a)

md ceil_pd(md a)

m rsqrt_ps(m a)

m rcp_ps(m a) m sqrt_ps(m a)m div_ps(m a,m b)

mi mulhi_epi16(mi a,mi b)
mi mul_epi32(mi a,mi b)

mi clmulepi64_si128

(mi a,mi b,ii imm) mi mulhrs_epi16(mi a,mi b)

mi hadds_epi16(mi a,mi b) mi hadd_epi16(mi a,mi b)

mi add_epi16(mi a,mi b)
mi adds_epi16(mi a,mi b)

mi hsubs_epi16(mi a,mi b) mi hsub_epi16(mi a,mi b) mi sub_epi16(mi a,mi b) mi subs_epi16(mi a,mi b)

mi maddubs_epi16(mi a,mi b)

mi madd_epi16(mi a,mi b)

mi sad_epu8(mi a,mi b)

mi xor_si128(mi a,mi b) mi and_si128(mi a,mi b) mi or_si128(mi a,mi b)

v zeroupper()

v zeroall()

mi undefined_si128()

v prefetch(c* ptr,i i)

v pause()

v clflush(v* ptr)

v mwait(u ext,u hints)

u getcsr()

v setcsr(u a)

m256 castpd_ps(m256d a)

m128d castpd256_pd128(m256d a)

md castsi128_pd(mi a)

m cvt_si2ss(m a,i b)

128

f cvtss_f32(m a)

mi cvtsi32_si128(i a)

i cvtss_si32(m a)

md cvtepi32_pd(mi a)

mi cvtepu8_epi32(mi a)mi cvtepi8_epi32(mi a)

mi pack_epi32(mi a,mi b)

mi setzero_si128()

mi set1_epi32(i a)

m broadcast_ss(f* a)

mi broadcastb_epi8(mi a)

Broadcast 
Load
loaddup
pd

NOTE:  Loads a 64-bit float 
from memory into all slots of 
the 128-bit register.

128

md loaddup_pd(d* ptr)

SSE3

mi set_epi32(i a,i b,i c,i d)

mi setr_epi32(i a,i b,i c,i d)

m moveldup_ps(m a)

m permutevar8x32_ps(m a,mi b)

mi bsrli_si128(mi a,ii i)

v store_pd(d* ptr,md a)
v store1_pd(d* ptr,md a)

Concatenate and 
Byteshift (Align)

alignrSSSE3

mi alignr_epi8(mi a,mi b,i c)

((a << 128) | b) >> c*8

Inserting data into an register without loading from memory

Change the order of bytes in a register, duplicating or zeroing 
bytes selectively or mixing the bytes of two registers

Replicating one element in a register 
to fill the entire register

Extraction

Extract

extract
epi16[SSE2],

epi8-64,ps

i extract_epi16(mi a,ii i)

(a>>(i[2:0]*16))[15:0]

NOTE: Extracts one element 
and returns it as a normal int 
(no SSE register!)

SSE4.1

128

256bit Extract

extractf128

si256,ps/d

m128 extractf128_ps
(m256 a,ii i)
(a >> (i * 128))[128:0]

NOTE: Extracts 128bit and 
returns it as a 128bit SSE 
register. For AVX2, there is 
only si256 and the 
operation is named 
extracti128.

256

AVX2
AVX

Min/Max/Avg

Average

avg
epu8-16

SSE2

Max

maxSSE4.1

SSE:ps SSE2:epu8, 

epi16,pd

SSE4.1:

epi8-32,epu8-32

SSE2

Min

minSSE4.1

SSE:ps SSE2:epu8, 

epi16,pd

SSE4.1:

epi8-32,epu8-32

SSE2

Horizontal 
Min
minposSSE4.1

epu16

NOTE: Computes horizontal 
min of one input vector of 
16bit uints. The min is stored in 
the lower 16 bits and its index 
is stored in the following 3 bits 

128

mi minpos_epu16(mi a)

mi min_epu16(mi a,mi b) mi max_epu16(mi a,mi b)

mi avg_epu16(mi a,mi b)

Int Compare

Int Compare

cmpZ
epi8-32,epi64[SSE4.1]

SSE2

NOTE: Z can be one of:
lt/gt/eq.Elements that 
equal receive 1s in all bits, 
otherwise 0s.

mi cmpeq_epi8(mi a,mi b)

Float Compare

cmp[n]Z
ps/d,ss/d,

si128[SSE4.1]

SSE2

NOTE: Z can be one of:
ge/le/lt/gt/eq
Returns a single int that is 
either 1 or 0. The n version is 
a not version, e.g., neq 
computes not equal.

128

md cmpeq_pd(md a,md b)

Name: Human readable 
name of the operation

Name(s) of the intrinsic: The names of the various flavors of the intrinsic. To assemble the final name to be used for an intrinsic, one must add a 
prefix and a suffix. The suffix determines the data type (see next field). Concerning the prefix, all intrinsics, except the ones which are prefixed with 
a green underscore _, need to be prefixed with _mm_ for 128bit versions or _mm256_ for 256bit versions. Blue letters in brackets like [n] 
indicate that adding this letter leads to another flavor of the function. Blue letters separated with a slash like l/r indicate that either letter can be 
used and leads to a different flavor. The different flavors are explained in the notes section. A red letter like Z indicates that various different 
strings can be inserted here which are stated in the notes section.

List of available data type suffixes: Consult the suffix table for further information about the various possible suffixes. The suffix chosen 
determines the data type on which the intrinsic operates. It must be added as a suffix to the intrinsic name separated by an underscore, so a 
possible name for the data type pd in this example would be _mm_cmpeq_pd. A suffix is followed by an instruction set in brackets, then this 
instruction set is required for the suffix. All suffixes without an explicit instruction set are available in the instruction set specified at the left.
If no type suffixes are shown, then the method is type independent and must be used without a suffix. If the suffixes are in parenthesis, the suffixes 
must not be appended and are encoded into the name of the intrinsic in another way (see notes for further information).

Notes: Explains the semantics 
of the intrinsic, the various 
flavors, and other important 
information.

Signature and Pseudocode: Shows one possible signature of the intrinsic in order to depict the parameter types and the return type. Note that only 
one flavor and data type suffix is shown; the signature has to be adjusted for other suffixes and falvors. The data types are displayed in shortened 
form. Consult the data types table for more information.

In addition to the signature, the pseudocode for some intrinsics is shown here. Note that the special variable dst depicts the destination register of 
the method which will be returned by the intrinsic.

Available Bitwidth: If no bitwidth is specified, the operation is available for 128bit and 256bit SSE registers. Use the _mm_ prefix for the 128bit and 
the _mm256_ prefix for the 256bit flavors. Otherwise, the following restrictions apply:

            : Only available for 256bit SSE registers (always use _mm256_ prefix)
            : Only available for 128bit SSE registers (always use _mm_ prefix)
            : Operation does not operate on SSE registers but usual 64bit registers (always use _mm_ prefix)

256

128

≤64

SEQ!

Sequence Indicator: If this 
indicator is present, it means 
that the intrinsic will 
generate a sequence of 
assembly instructions instead 
of only one. Thus, it may not 
be as efficient as anticipated.

Instruction Set: Specifies the 
instruction set which is 
necessary for this operation. 
If more than one instruction 
set is given here, then 
different flavors of this 
operation require different 
instruction sets.

Data Types

ii
Immediate signed 32 bit integer: The value used for 
parameters of this type must be a compile time constant

mi
Integer SSE register, i.e., __m128i or __m256i, 
depending on the bitwidth used.

i Signed 32 bit integer (int)
iX Signed X bit integer (intX_t)
uX Unsigned X bit integer (uintX_t)

m
32-bit Float SSE register, i.e., __m128 or __m256, 
depending on the bitwidth used.

md
64-bit Float (double) SSE register, i.e., __m128d or 
__m256d, depending on the bitwidth used.

f 32-bit float (float)
d 64-bit float (double)

v void

X* Pointer to X (X*)

m/md

mi

mi

m/md

mi

mi

m,

md,mi

-

mi

Suffix Type Description Suffix Description

String Compare Description

SSE2

AVX

SSE4.1

SSE

BMI1

SSSE3

SSE3

AVX2

FMA

x86

LZCNT

POPCNT

BMI2

AES

CVT16

x86 Base Instructions

Bulldozer 11

Sandy Bridge 11 Bulldozer 11
Haswell 13

Bulldozer 11

K10 07
K10 07

 Nehalem 08
Penryn 07

Bulldozer 11Woodcrest 06
Prescott 04 K9 05

K8 03Pentium 4 01 
Pentium III 99 K7 Palomino 01 

-
Haswell 13

Haswell 13
 Nehalem 08

Westmere 10 Bulldozer 11

Sandy Bridge 11 Bulldozer 11
-Haswell?? 14

Bulldozer 11Ivy Bridge 12

Bulldozer 11
Bulldozer 11

Streaming SIMD 
Extensions

Advanced Vector 
Extensions

Bit Manipulation 
Instructions

16-bit Floats

Fused Multiply and Add

Carryless Multiplication
Advanced Encryption Standard

all all
I.Set DescriptionIntel (Year) AMD (Year)

Instruction Sets

x86 Intrinsics Cheat Sheet
Jan Finis

finis@in.tum.de

Introduction
This cheat sheet displays most x86 intrinsics supported by Intel processors. The following intrinsics were omitted:
· obsolete or discontinued instruction sets like MMX and 3DNow!
· AVX-512, as it will not be available for some time and would blow up the space needed due to the vast amount of new instructions
· Intrinsics not supported by Intel but only AMD like parts of the XOP instruction set (maybe they will be added in the future). 
· Intrinsics that are only useful for operating systems like the _xsave intrinsic to save the CPU state
· The RdRand intrinsics, as it is unclear whether they provide real random numbers without enabling kleptographic loopholes

Each family of intrinsics is depicted by a box  as described below. It was tried to group the intrinsics meaningfully. Most information is taken from the Intel Intrinsics Guide (http://software.intel.com/en-us/articles/intel-intrinsics-guide). Let me know 
(finis@in.tum.de) if you find any wrong or unclear content.

When not stated otherwise, it can be assumed that each vector intrinsic performs its operation vertically on all elements which are packed into the input SSE registers. E.g., the add instruction has no description. Thus, it can be assumed that it performs 
a vertical add of the elements of the two input registers, i.e., the first element from register a is added to the first element in register b, the second is added to the second, and so on. In contrast, a horizontal add would add the first element of a to the 
second element of a, the third to the fourth, and so on.

To use the intrinsics, included the <x86intrin.h> header and make sure that you set the target architecture to one that supports the intrinsics you want to use (using the -march=X compiler flag).

Version 2.1f

TSX Transactional Sync. ExtensionsHaswell 13 -

Begin 
Transaction

_xbegin

-

NOTE: Specify the start of an 
RTM code region. If the logical 
processor was not already in 
transactional execution, then it 
transitions into transactional 
execution. On an RTM abort, 
the logical processor discards 
all architectural register and 
memory updates performed 
during the RTM execution, 
restores architectural state, 
and starts execution beginning 
at the fallback address 
computed from the outermost 
XBEGIN instruction.

u _xbegin()

Commit 
Transaction

_xend

-

NOTE: Specify the end of an 
RTM code region. If this 
corresponds to the outermost 
scope, the logical processor 
will attempt to commit the 
logical processor state 
atomically. If the commit fails, 
the logical processor will 
perform an RTM abort.

v _xend()

TSX

TSX

Abort 
Transaction

_xabort

-

NOTE: Force an RTM abort. The 
EAX register is updated to 
reflect an XABORT instruction 
caused the abort, and the imm 
parameter will be provided in 
bits [31:24] of EAX. Following 
an RTM abort, the logical 
processor resumes execution 
at the fallback address 
computed through the 
outermost XBEGIN instruction.

v _xabort(ii imm)

TSX

Mix the contents of two registers

Set or reset a range of bits

Change the position of selected bits, zeroing out 
remaining ones

Count specific ranges of 0 or 1 bits

Convert all elements in a packed SSE register

Convert a single element in the lower bytes of an SSE register

Perform more than one operation at once

Perform a bitwise operation and check whether all bits 
are 0s afterwards

Loading data into an SSE register or storing data from an SSE register

Loading data into an SSE register

Storing data to a memory address which must be 16-
byte aligned (or 32-byte for 256bit instructions)

Storing data to a memory address which does 
not have to be aligned to a specific boundary

Loading data from a memory address which must be 
16-byte aligned (or 32-byte for 256bit instructions)

Loading data from a memory address which does 
not have to be aligned to a specific boundary

epi8

SSE2
SSE

i cmpistra(mi a,mi b,ii i)
i cmpestra
(mi a,i la,mi b,i lb,ii i)

i cmpistrc(mi a,mi b,ii i)
i cmpestrc
(mi a,i la,mi b,i lb,ii i)i cmpistri(mi a,mi b,ii i)

i cmpestri
(mi a,i la,mi b,i lb,ii i)mi cmpistrm(mi a,mi b,ii i)

mi cmpestrm
(mi a,i la,mi b,i lb,ii i)


	SSEHierarchy-v2.1-large.vsd
	Page-1


