X86 Intrinsics Cheat Sheet

Jan Finis
inis@in.tum.de

Bit Operations

Conversions

Rounding

SSE
SSE2

Boolean Logic Bit Shifting & Rotation Packed Conversions convertal elementsina packed st register Reinterpet Casts
Arithmetic Logic Shift Convert Float ; . .
Bool XOR Bool AND | |Bool NOTAND || Bool OR b Bie > Rotate Left/ . || PackWith || sign Extend || Zero Extend 5/D/132 128bit Cast
Xor =21 and =21 andnot | [or sse2| srali] sse2 [s1/r1[1] x86 | [lrot[#]1/r omie| cvtx v ssea.1| cvtx v | [sseaa] cvtx v sse2 | castX Y
51128, ps[SSE], pd 51128, ps[SSE], pd 51128, ps[SSE], pd 51128, ps[SSE], pd epil6-64 epil6-64 (ul6-64) ph < ps SSE2 | pack[u] S epi8-32 epu8-32 — epiB-32 SSE2 | cvt [t] XY s1128,ps/d

mi xor_silZB(mi a,mi b)

mi and sil28 (mi a,mi D)

mi ardrmt_silZB (mi a,mi b)
la &b

mi or_silZB (mi a,mi b)

Change the position of selected bits, zeroing out

NOTE: Shifts elements right
while shifting in sign bits.
The i version takes an
immediate as count. The
version without i takes the

NOTE: Shifts elements left/
right while shifting in zeros.
The i version takes an
immediate as count. The
version without i takes the

NOTE: Rotates bits in a left/
right by a number of bits
specified in i. The 1 version
is for 64-bit ints and the
version for 16-bit ints.

9 2 o lower 64bit of an SSE lower 64bit of an SSE r must be specified. : . :
> A A 64 1lrotl (u64 a) saturation. The u version converted, otherwise 4. .
SeIeCtlve Blt MOVI ng (LRI O register. register. 2 = 2 2 m cvtph ps(mi a) _saturates to the unsigned The_tversion is only . 128/256b|t Rou nd down
. . mi srai epi32(mi a,ii32 i)| |mi slli epi32(mi a,ii i) mi cvtps ph(m a, i 1) integer type. available when casting toint
Blt Scatter B't Gather . mi sra epi32(mi a,mi b) mi sll epi32(mi a,mi b) mi pack epi32(mi a,mi b) ?&?éﬂggiﬁ;{#ncamn CaSt [Z56] (ﬂoor)
D ; E Movemask Extract Bits g
eposit) __ xtract) _ o 5 ovtepi32 pd i 2 ax | castX v ssea] floor
i i i d128-pd256,
sz | pdep a2 | pext sse2 | movemask | [mri| bextr Variable Variable Logic el ps/d, ss/d
. ; ; d floor pd(md a)
132-64 132-64 epi8, pd, ps [SSE] 132-64 Arithmetic Shift Shift . .))) 51128051256 w
NOTE: Deposit contiguous NOTE: Extract bits from a at NOTE: Creates a bitmask NOTE: Extracts 1 bits from a S | ngle E I e m e nt CO nve rSIO n Cormvriza eligle clEmentiin el ouarlhies eifern S g ier NOTE: Reinterpret casts
low bits from a to dst at the corresponding bit frfom t:e ImOSt significant bit starting at bit s. AVX2 | sl/rav AVX2 | sl/rlv gr;;ﬁt)(;gs\’blictzﬁt |stf}:om R d
the corresponding bit locations specified by mask of each element. 61 bextr uA (u6A 2,02 5,02 1) epi32-64 cpi32-64 K . . . Single SSE Float 0 256 DI, then the oun
locations specified by mask m to contiguous low bits in i movemask epi8 (mi a) Ta> s & (1<« -1 Shifts of of “Shifts ol o Bit Scan Slngle Conversion S|ng|e Float to Slngle 128'b|t g Old Float/lnt upper bits are undefined! No
R I oA N B et e shifcng msign | | ieht while kg inseron Forward/Reverse to Normal Float Conversion operation is generated.
tt X bits in d tt . right while shifting in sign right while shifting in zeros. H H . :
set to zero ftsIn dst are set to zero bits. Each element in a is Each element in a is shifted <64 to FIoat Wlth FI” |nt CO nversion lnt Conve rsion CO nVer‘Sion [128] T2 costpdst pIAR R D) EEEEo ll round
u64 _pdep ubd (u64 a,ubd m) u6d _pext ubd (ubd a, ubd m) shiftgq by an amount by an amount specified by %86 |_bitiscan] 128 128 128 128 SSE | cvt[t] X2Y ps/d, ss/d
zgfféfslsgnbdyirsgeelement . itrllwilcorreSpondmg element (13/2) SSE2 | cvtX Y SSE | cvt[t] X Y SSE2 | cvtx Y SSE2 | cvtXxX Y picps, sioss 256bt C t NOTE: Rounds according to a
5132-64,s5/d - ss/d ss/d - si32-64 5i32-128 SS—£32, 5d-£64 NOTE: Converts X to Y. IitLas rounding paramater r.

Bit Masking Set or reset a range of bits

mi slav epi32 (mi a,mi b)

mi sllv epi32 (mi a,mi b)

Zero High Bits Reseic IéQ,ENeSt I[\/Iask tji’ -Ig.o Find Lowest
e7] Bit | Lowest I-Bit 1-Bit
BMI2 | _bzhi BMT1 | _blsr BMT1 | ~blsmsk BMT1 | _blsi
132-64 132-64 132-64 u32-64

NOTE: Zeros all bits in a
higher than and including
the bit at index i.

NOTE: Returns a but with
the lowest 1-bit set to 0.

u64 _blsr ué4 (u64 a)

NOTE: Returns an int that
has all bits set up to and
including the lowest 1-bit in

NOTE: Returns an int that
has only the lowest 1-bit in a
or no bit set if a is 0.

Bit Cou nti ng Count specific ranges of 0 or 1 bits

NOTE: Returns the index of
the lowest/highest bit set in
the 32bit int a. Undefined if
ais0.

i32 bit scan forward(i32 a)

Count 1-Bits

Count Leading

Count Trailing

NOTE: Converts between 4x
16 bit floats and 4x 32 bit
floats (or 8 for 256 bit
mode). For the 32 to 16-bit
conversion, a rounding mode

epil6,epi32
NOTE: Packs ints from two
input registers into one
register halving the bitwidth.
Overflows are handled using

NOTE: Sign extends each
element from X to Y. ¥ must
be longer than X.

NOTE: Zero extends each
element from X to Y. ¥ must
be longer than X.

epi32,ps/d

mi_cvtepi8 epi32 (mi a)

mi cvtepu8 epi32(mi a)

NOTE: Converts packed
elements from X to Y. If pd is
used as source or target
type, then 2 elements are

NOTE: Reinterpret casts
from X to Y. No operation is
generated.

md castsil28 pd(mi a)

See also: Conversion to int
performs rounding implicitly

Round up
(ceiling)
SSE4.1| ceil

ps/d,ss/d
md ceil pd(md a)

NOTE: Converts a single

element in b from X to V.
The remaining bits of the
result are copied from a.

md cvtsi6d_sd(md a,i64 b)

double (b[63:0]) |
(a[127:64] << 64)

NOTE: Converts a single
element from X (int) to Y
(float). Result is normal int,
not an SSE register!

The t version performs a
truncation instead of
rounding.

i cvtss si32(m a)

NOTE: Converts a single
integer from X to Y. Either of
the types must be si128. If
the new type is longer, the
integer is zero extended.

mi cvtsi32 sil28(i a)

NOTE: Converts a single SSE
float from X (SSE Float type)
to Y (normal float type).

£ cvtss £32(m a)

Converts between int and
float. p_ versions convert 2-
packs from b and fill result
with upper bits of operand
a. s_ versions do the same
for one element in b.

The t version truncates
instead of rounding and is
available only when
converting from float to int.

256

md rou.nd_pd(md a,ir)

AVX | castXx Y
ps,pd,si256
NOTE: Reinterpret casts

from X to Y. No operation is
generated.

m256 castpd ps (m256d a)

(Popcount) Z2eros = Zeros = m ovt_siZss(m 2,1 b)
POPCNTl popcnt chu'rl _lzcnt BMI1 | _tzent
u32-64 u32-64 u32-64

Arithmetics

Basic Arithmetics

Multiplication

mi set epi32(ia,ib,ic,id)

Aligned Load

Loading data from a memory address which must be
16-byte aligned (or 32-byte for 256bit instructions)

Stream Load

Load Aligned

Load Reversed

Mask Load

Mul High with

Carryless Mul Mul Mul Low Mul High
Y] & Round & Scale
cuor|clmulepi6d| 28] mul =2E2 npullo sse2| mulhi ssse3| mulhrs

51128

epi32[SSE4.1],epu32,

NOTE: Perform a carry-less
multiplication of two 64-bit
integers, selected from a

store the results in dst
(result is a 127 bit int).

and b according to imm, and

ps/d,ss/d
NOTE: epi32 and epu32
version multiplies only 2 ints
instead of 4!

mi mul_epi32 (mi a,mi b)

mi clmulepiéd_sil28

(mi a,mi b,ii imm)

epil6,epi32[SSE4.1]

epil6,epul6

epilé

NOTE: Multiplies vertically
and writes the low 16/32
bits into the result.

NOTE: Multiplies vertically
and writes the high 16bits
into the result.

mi xrullo_qailG (mi a,mi b)

mi nulhi_q:ilG (mi a,mi b)

NOTE: Treat the 16-bit
words in registers A and B as
signed 15-bit fixed-point
numbers between -1 and 1
(e.g. 0x4000 is treated as 0.5
and 0xa000 as -0.75), and
multiply them together.

mi mulhrs epil6 (mi a,mi b)

;G:T?ﬁ_UM(u& a2l (a-l) & a a orno bit setif a is 0. u64 _blsi ubd (u6d a) NOTE: Counts the number of NOTE: Counts the number of NOTE: Counts the number of
P (;7?01 <en u64 _blsmsk_u64 (u6d a) (ta) & a 1-bitsin a. leading zeros in a. trailing zeros in a.
dst[63m] = 0 (a-l) " a 132 popent u6d (u64 a) 164 lzent u6d (u6d a) 164 _tzent ubd (u6d a)
Registe r I/o Loading data into an SSE register or storing data from an SSE register overview Version 2.1f
Load Loading data into an SSE register Fences Mlsc I/O |ntrOdUCtI0n
This cheat sheet displays most x86 intrinsics supported by Intel processors. The following intrinsics were omitted:
. . . X . . . obsolete or discontinued instruction sets like MMX and 3DNow!
Set Reglster Inserting data into an register without loading from memory Store Fence Prefetch . AVX-512, as it will not be available for some time and would blow up the space needed due to the vast amount of new instructions
. Intrinsics not supported by Intel but only AMD like parts of the XOP instruction set (maybe they will be added in the future).
. Intrinsics that are only useful for operating systems like the _xsave intrinsic to save the CPU state
Set Reve rsed Set I nsert Re pllcate SSE | sfence SSE | pre fetch . The RdRand intrinsics, as it is unclear whether they provide real random numbers without enabling kleptographic loopholes
- - Each family of intrinsics is depicted by a box as described below. It was tried to group the intrinsics meaningfully. Most information is taken from the Intel Intrinsics Guide (http://software.intel.com/en-us/articles/intel-intrinsics-guide). Let me know
[SEQ! [SEQ! 128] |SEQ! - - (finis@in.tum.de) if you find any wrong or unclear content.
SSE2 SSE2 : NOTE: Guarantees that every NOTE: Fetch the line of data
W' setr W' set SSE4. 1| insert SSE2 | setl store instruction that from memory that contains When not stated otherwise, it can be assumed that each vector intrinsic performs its operation vertically on all elements which are packed into the input SSE registers. E.g., the add instruction has no description. Thus, it can be assumed that it performs
epiB-64x,ps[SSE]/d epi8-64x% epil6 [SSE2] epiB8-64x, ps [SSE] /d precedes, in program order, is address ptr to a location in a vertical add of the elements of the two input registers, i.e., the first element from register a is added to the first element in register b, the second is added to the second, and so on. In contrast, a horizontal add would add the first element of a to the
ml28 /m1,28d/i [AVX] ' ps [SZE] /d s’s/d epiB8-64,ps ' NOE-)[E Broad;:;jsts one input global(ly ‘t’iSibi,e bef?]r‘eha?y” the cache heirarchy specified second element of a, the third to the fourth, and so on.
’ ’ ’ : ity hint i AR .)) N))
NOTE: Sets and returns an SSE m128/m128d/1 [AVX] NOTE: Inserts an element i element into all slots of an :h‘;rfeell'?cseri‘;cpll?onggrr:cordoerc.’ws by the locality hint 1. To use the intrinsics, included the <x86intrin.h> header and make sure that you set the target architecture to one that supports the intrinsics you want to use (using the -march=x compiler flag).
register with input values. The NOTE: Sets and returns an at a position p into a. SSE register. “ sfence () v prefetch(c* ptr,i i)
,?ég:rrsgdﬂ?:iﬁftfﬁrsﬁnput SSE register with input mi insert epil6 mi setl epi32(i a) Cache Li Name: Human readable Available Bitwidth: If no bitwidth is specified, the operation is available for 128bit and 256bit SSE registers. Use the _mm__ prefix for the 128bit and
gets stored in the lowest bits. ¥:l|(l:Sig'ii'éffplaia\';:t's; é’;‘iﬁ% 3]11.2) a[127:0] acne Line name of the operation the_mm256_ prefix for the 256bit flavors. Otherwise, the following restrictions apply:
For i 64, use the i64 S t -
e epLosx I:E;I_I'S; mtpll){ftgeFtS Storeﬂé? cslitl: ‘_151[2 :0] Ili‘ 1520 Load Fence Flush Sequence Indicator: If this : Only available for 256bit SSE registers (always use _mm256__ prefix)
mi setr epi2(ia,ib,ic,id) usi t}:ge :Isaielz]s;c s?:ffeb]sl ’ foe el 15:01 See | 11 h indicator is present, it means : Only available for 128bit SSE registers (always use _mm__ prefix)
= == SSE2 | 1fence c us that the intrinsic will : Operation does not operate on SSE registers but usual 64bit registers (always use _mm__ prefix)

generate a sequence of

NOTE: Flushes cache line

load instruction that

NOTE: Guarantees that every

precedes, in program order,
is globally visible before any
load instruction which follows
the fence in program order.

that contains p from all
cache levels

assembly instructions instead
of only one. Thus, it may not

Float Compare

Register

v lfence ()
sEoT] 73]
sse2 [strean load||sse2| load ss2 | loadr | o] maskload Memory Fence

51128, 51256 [AVX]

pd,ps,sil28

pd, ps

ps/d,epi32-64 [AVX2]

NOTE: Loads 128 bit from
memory into register.
Memory address must be
aligned! Memory is fetched

NOTE: Loads 128 bit from
memory into register.
Memory address must be
aligned!

at once from an USWC

md lcad_pd(d* ptr)

NOTE: Loads 128 bit from
memory into register. The
elements are loaded in
reversed order. Memory
must be aligned!

NOTE: Loads from memory
if the highest bit for each
element is set in the mask.
Otherwise 0 is used. ptr
must be aligned!

device without going
through the cache hierachy.

mi stream load sil28
(mi* ptr)

m loadr ps(f£* ptr)

dst[31:0] :=* (ptr) [127:96]
dst[63:32] :=* (ptr) [95:64]
dst[95:64] :=* (ptr) [63:32]
dst[127:96] :=* (ptr) [31:0]

mi maskload epi64
(i64* ptr,mi mask)
dst[MAX:128] := 0
FOR j :=0 to 1

i := j*64

(Load & Store)

51128 [SSE4.1]

agreen underscore _, need to be prefixed with _mm

Name(s) of the intrinsic: The names of the various flavors of the intrinsic. To assemble the final name to be used for an intrinsic, one must add a
prefix and a suffix. The suffix determines the data type (see next field). Concerning the prefix, all intrinsics, except the ones which are prefixed with
for 128bit versions or _mm256__ for 256bit versions. Blue letters in brackets like [n]

be as efficient as anticipated. ISEoT] [i78] — —
v_clflush (v* ptr) P SEQ! 228 indicate that adding this letter leads to another flavor of the function. Blue letters separated with a slash like 1/r indicate that either letter can be
Instruction Set: Specifies the SSE2 | cmp [n]Z used and leads to a different flavor. The different flavors are explained in the notes section. A red letter like Z indicates that various different
Get U ndeﬁ ned instruction set which is ps/d, ss/d, strings can be inserted here which are stated in the notes section.

necessary for this operation.
If more than one instruction

AVX | undefined

set is given here, then
different flavors of this

ps/d,sil28-256

operation require different

NOTE: Returns an SSE

sse2| mfence

register with undefined
contents.

instruction sets.

NOTE: Z can be one of:
ge/le/lt/gt/eq
Returns a single int that is
either 1 or 0. The n version is
anot version, e.g., neq
computes not equal.

md cmpeq pd (md a,md b)

List of available data type suffixes: Consult the suffix table for further information about the various possible suffixes. The suffix chosen
determines the data type on which the intrinsic operates. It must be added as a suffix to the intrinsic name separated by an underscore, so a
possible name for the data type pd in this example would be _mm_cmpeq_pd. A suffix is followed by an instruction set in brackets, then this
instruction set is required for the suffix. All suffixes without an explicit instruction set are available in the instruction set specified at the left.

If no type suffixes are shown, then the method is type independent and must be used without a suffix. If the suffixes are in parenthesis, the suffixes
must not be appended and are encoded into the name of the intrinsic in another way (see notes for further information).

NOTE: Guarantees that
every memory access that

the memory fence

precedes, in program order,

mi undefined sil28()

Notes: Explains the semantics

of the intrinsic, the various

flavors, and other important
information.

instruction is globally visible
before any memory
instruction which follows the

Signature and Pseudocode: Shows one possible signature of the intrinsic in order to depict the parameter types and the return type. Note that only
one flavor and data type suffix is shown; the signature has to be adjusted for other suffixes and falvors. The data types are displayed in shortened

form. Consult the data types table for more information.
In addition to the signature, the pseudocode for some intrinsics is shown here. Note that the special variable dst depicts the destination register of

the method which will be returned by the intrinsic.

Addition / Subtraction

Horizontal Add Horizontal Add Add with Alternating Add
with Saturation Add Saturation and Subtract
ssse3a| hadds ssses| hadd 2] add =221 adds sse3| addsub
epil6 epil6-32,ps/d epi8-64,ps[SSE]/d, epiB-16,epuB-16 ps/d
NOTE: Adds adjacent pairs of NOTE: Adds adjacent pairs of ss[SSE]/d mi adds epil6(mi a,mi b) m addsub ps (m a,m b)
elements with saturation elements mi add epil6 (mi a,mi b) = FOR j := 0 to 3
mi hadds epil6(mi a,mi b)| | mi hadd epil6(mi a,mi b) i:=3*32
> € s IF (j is even)
- - dst[i+31:1] :=
Horizontal Subtract Horizontal oLl - bl
I 1 H dst[i+31:1] :=
with Saturation Subtract Subtract Subtract with SLe31:0) + pie3tsi]
SSSE3 SSSE3 1
| hsubs | __hsub - Saturation
cpil6 epil6-32,ps/d —|SSE2 sub ”
NOTE: Subtracts adjacent pairs NOTE: Subtracts adjacent epi8-64,ps[SSE]/d, S5 | subs
of elements with saturation pairs of elements ss[SSE]/d epi8-16,epu8-16
mi hsubs epil6(mi a,mi b)| [mi hsub epil6(mi a,mi b) | | mi sub epil6(mi a,mi b) | [mi subs epil6(mi a,mi b)

Div/Sqrt/Reciprocal

Div

Approx.

Approx.

Square Root

Sign
Modification

Reciprocal Reciprocal Sqrt
SSE2 | div SSE | rcp SSE | rsqrt —|SSSSEE2 sqrt Absolute
ps/d,ss/d ps, ss ps, ss ps/d,ss/d
m div_Ps (m a,m b) m rcp ps (m a) NOTE: Approximates 1.0/sqrt(x) m sqrt_Ps (m a) SSSE3| abS
m rsqrt ps(m a) epi8-32

mi abs epil6 (mi a)

mi minpos epul6 (mi a)

Min/Max/Avg Conditional
: Negate or Zero
Horizontal . & :
) Min Max Average ssse3| sign
M'n [128] epi8-32
. SSE2 . SSE2 . i
SSE4. 1| |__| |__| SSE2 | NOTE: For each element in a
mlnpos SSE4. 1 min SSE4 . 1 max an and b, set result element to
epul6 SSE:ps SSE2:epu8, SSE:ps SSE2:epu8, epu8-16 aif b is positive, set result
NOTE: Computes horizontal epil6, pd epil6,pd mi avg epul6 (mi a,mi b) elementto -aifbis
min of one input vector of SSE4.1: SSE4.1: = negative or set result
is stored in the following 3 bits | |mi min epul6(mi a,mi b)| [mi max epulé(mi a,mi b) mi sign epil6(mi a,mi b)

CO m pOS|te Arlth m etlcs Perform more than one operation at once

Dot Product

Compwosite |

nt Arithmetics

Conditional Multiply and Multiply and | [Sum of Absolute| |Sum of Absolute
Dot Product Horizontal Add | | Horizontal Add Differences Differences 2
SSE4.1| dp sssszl maddubs SSE3 | madd SSE2 | sad ssz4.1| sadbw
ps/d epil6 epil6 epu8 epu8

NOTE: Computes the dot
product of two vectors. A
mask is used to state which
components are to be
multiplied and stored.

m dp_ps(m a,mb,ii imm)
FOR j := 0 to 3
IF imm[4+7]
tmp [1+31:1] :=
ali+31:i]
ELSE
tmp[i+31:1] := 0

sum[31:0] :=

+ tmp[63:32]+ tmp(31:0)

NOTE: Adds vertical 8 bit ints
producing a 16 bit int and
adds horizontal pairs with
saturation producing 8x16 bit
ints. The first input is treated
as unsigned and the second as

NOTE: Multiply 16-bit ints
producing a 32-bit int and
add horizontal pairs with
saturation producing
4x32-bit ints

NOTE: Compute the absolute
differences of packed
unsigned 8-bit integers in a
and b, then horizontally sum
each consecutive 8

signed. Results and
intermediaries are signed.

* b[i+31:1]

differences to produce two
unsigned 16-bit integers, and
pack these unsigned 16-bit
integers in the low 16 bits of
64-bit elements in dst.

NOTE: Compute the sum of
absolute differences (SADs) of
quadruplets of unsigned 8-bit
integers in a compared to those
in b, and store the 16-bit results.
Eight SADs are performed using
one quadruplet from b and eight
quadruplets from a. One
quadruplet is selected from b
starting at on the offset specified

—
ABS (a-b) [
GEsnp

tmp[127:96] + tmp[95:64]

in imm. Eight quadruplets are
formed from sequential 8-bit
integers selected from a starting
at the offset specified in imm.

round constant specified in i.

mi aeskeygenassist sil28

(mi a,ii i)

mi aesenc sil28(mi a,mi key)

mi aesdec sil28(mi a,mi key)

u crc32 u32(u crc,u v)

Miscellaneous

corresponds to the outermost
scope, the logical processor
will attempt to commit the
logical processor state
atomically. If the commit fails,
the logical processor will
perform an RTM abort.

v _xend()

Abort
Transaction

Monitor . . Get MXCSR
Pause Monitor Wait .
Memory Register
sse2 | pause sse3| monitor sse3| mwait sse | getcsr

- _xabort

Begin
Transaction

- _xbegin

NOTE: Provide a hint to the
processor that the code
sequence is a spin-wait loop.
This can help improve the
performance and power
consumption of spin-wait
loops.

v pause ()

NOTE: Arm address
monitoring hardware using
the address specified in p. A
store to an address within the
specified address range
triggers the monitoring
hardware. Specify optional
extensions in e, and optional
hints in h.

NOTE: Hint to the processor
that it can enter an
implementation-dependent-
optimized state while waiting
for an event or store
operation to the address
range specified by MONITOR.

NOTE: Get the content of the
MXCSR register.

EAX register is updated to

u getesr ()

NOTE: Force an RTM abort. The

NOTE: Specify the start of an
RTM code region. If the logical

IF mask[1+63] :
dst[i+63:1i]:= * (ptr+i) fence in program order. 2 2
=t P e Instruction Sets Data Type Suffixes Data Types
dstlit63:i]:= 0 Each intrinsic is only available on machines which support the Most intrinsics are available for various suffixes which depict different| | The following data types are used in the signatures of the intrinsics.
corresponding instruction set. This list depicts the instruction sets data types. The table depicts the suffixes used and the corresponding Note that most types depend on the used type suffix and only one
and the first Intel and AMD CPUs that supported them. SSE register types (see Data Types for descriptions). example suffix is shown in the signature.
. Loading data from a memory address which does — n — m —
U Nna I |g n ed Loa d not have to be aligned to a specific boundary 1.Set | Intel (Year) AMD (Year) | Description Suffix | Type Description Suffix Description
x86 all all x86 Base Instructions ph mi Packed half float (16 bit float) i Signed 32 bit integer (int)
Fast Load Load Broadcast Broadcast SSE | Pentium 11l 99 [K7 Palomino 01 ps/d | m/md | Packed single float / packed double float ix | Signed X bit integer (intX t)
. . Gather Mask Gather SSE2 | Pentium 4 01 K8 03 epiX | mi [Packed X bit signed integer ux | Unsigned X bit integer (uintx t)
Unal |gnEd H |gh/LOW [Iz8] [EEo1] Load [1Z8] Load SSE3 | Prescott 04 K9 05 Streaming SIMD epuX | mi | Packed X bit unsigned integer ;i | !mmediate signed 32 bit integer: The value used for
SSE3 | 1ddqu SSE2 | loadh/1 SSE2 | 1oadl AVX | broadcast | [avxe | :32/i64gather| | Avx2 |mask 137/ 164gter] sssE3 [Woodcrest 06 | Bulldozer 11 | Extensions Single X bit signed integer. If there is a si128 parameters of this type must be a compile time constant
135 S~ v Py p— epii-ei.po/d epiio-61.pa/d ssE4.1| Penryn 07 | Bulldozer 11 siX | mi vefrfslorg th}:-hsahzﬁsefunctlon for 256 bits is usually £ | 32-bit float (float)
’ 4 ’ ’ 4 suffixed with si256. n
NOTE: Loads 128bit integer NOTE: Loads a value from NOTE: Loads a float from NOTE: Broadcasts one input NOTE: Gather elements from | [NOTE: Same as gather but [75g] SSE4.2] Nehalem 08 | Bulldozer 11 o — T Sngle X bit unsiancd nteser i SSE resister d | 64-bit float (double)
data into SSE register. Is memory into the high/low memory into all slots of the (ss/d) element or 128bits memory using 32-bit/64-bit takes an additional mask and T [| AVX |Sandy Bridge 11| Bulldozer 11 | Advanced Vector u - g - .g - g k g - . Integer SSE register, i.e., ml128ior m256i,
faster than Loadu if value half of a register and fills the 128-bit register. (ps/d) from memory into all indices. The elements are src register. Each element is avx2 | Haswell 13 N Extensions uX - Single X bit unsigned integer (not in SSE register) ML | depending on the bitwidth used. -
crosses cache line boundary. other half from a. For pd, there is also the slots of an SSE register. All loaded from addresses only gathered if the highest n Single single float/double float, remaining bits - - -
Should be preferred over md loadl pd(nd a,d* ptr) operation loaddup in SSE3 suffixes but ss are only starting at ptr and offset by corresponding bit in the mask - Haswell 13 Bulldozer 11 | Fused Multiply and Add copied. Operations involvin tﬁese types often - 32-bit Float SSE register, i.e.,, _m128 or___m256,
loadu. dst[63:07 :=* (pt]'f) 163:0]| | which may perform faster available in 256 bit mode! each 32-bit/64-bit element in is set. Otherwise it is copied AES | Westmere 10 | Bulldozer 11 | Advanced Encryption Standard haSe diffe‘?ent signatures: Agn extra ir\:gut register depending on the bitwidth used.
" " " 3 641 .= e than load1. hindex i: led by th fi . o . " " "
i Lddqu 51128 (miv pie)] |dstl127:64] := al127:64) an loa _ ' broadcast_ss (£% a) ggtegfin";),eélastﬁgar:d y the .rom sr.c : CLMUL | Westmere 10 | Bulldozer 11 | Carryless Multiplication ss/d |m/md | is used and all bits which are not used by the nd 64-bit Float (double_) SSE register, i.e.,, m128dor
md loadl pd(d* ptr) elements are merged into dst. "&f:fg—ifﬁgﬁ—?ﬁ CcvT16| Ivy Bridge 12 | Bulldozer 11 | 16-bit Floats single element are copied from this register. The __m256d, depending on the bitwidth used.
, , , : i . -
d . 128bit Pseudo r?usr:?)lélrdok;eg;éhzéfegrelse.;:ents mi mask,i32 s) - Haswell 13 - Transactional Sync. Extensions signatures are not depicted here; see manual for v | void
Loa Load Single Broadcast & mited by the minimum of | |FR = 0 t0 L PopcNT| Nehalem 08 K10 07 — exact signatures. ** | Pointer to X (x*)
Unal igned [iz8] ==5m Gather 58 the;vfpe ttﬁ Ioaf(fi atﬂd the type m = %64 LZCNT | Haswell 13 K10 07 Bit Manipulation mle gd,| ™ | AVXsometimes uses this suffix for 128bit float/
SSE2 | 1oad Load - used for the ofiset: IF mask[i+31] BMI1 [Sandy Bridge 11| Bulldozer 11 | Instructions mi28i |md,mi| double/int operations.
SSE2 | loadu 128| | AVX loadu? mi i6dgather_epi32 dst[i+31:1] := 222 | Haswell?? 12 -
ss,sd,epi64d SSE3 | loaddup m128 m128d,m1281 (i* ptr,mi a,i s) *(ptrt+a[i+63:1]*s) _
pd,ps,si16-s1128 N - 4 4 FOR j := 0 to 1; mask[1+31] =0
NOTE: Loads a single pd NOTE: Loads two 128bit i iz §%32 EISE
NOTE: Loads 128 bit or less element from memory and elements from two memory Lo J* . .
ey N -~) b € m := j*64 dst[i+31:1] :
(for si16: §4 versions) frpm zeros remaining bytes. For NOTE: Loadsq 64-bit float Jocations. Ast[i®31:4] = Sreli+3lid
z:nreergigpe/rmmthe fontsof nggﬁ tehpeicgznlmand ° Iﬁl'qz";eﬂ?fﬁlg'.’liif” stots of | I codu 28 (& oL, & 10) *(ptr + a[m+63:m]*s])| |maskMBX:64]
. = _ dst[127:0] = *p2; dst[MAX:64] := 0 dst[MAX:64] :=
md loadu pd(d* ptr) md load sd(d* ptr) md loaddup pd(d* ptr) dst[255:128] = *pl;
Storing data from an SSE register into memory or registers . . Change the order of bytes in a register, duplicating or zeroing
Sto re Byte Ma n l p u |at|0n bytes selectively or mixing the bytes of two registers
H Storing data to a memory address which must be 16-
Al |g n e d sto re byte aligned (or 32-byte for 256bit instructions) EXt ra Ct | O n M |X Reg | ste rs Mix the contents of two registers Byte S h uffl | n g Change the byte order using a control mask
Aligned Aligned Reverse Aligned Store Broadcast Masked Store Extract Move Element Move b Concatenate and 32-bit Int High / Low huff]
Stream Store Store Store . . HighesL 256bit Insert B hift (Ali . Byte Shuffle
SEQT 128 SEQ! 128 128 with Fill [iz8] igh<—> OWm [z58] yteshift (|gn) Shuffle 16bit Shuffle
SSE SSE SSE SSE AVX
. E] . . /A
—|SSE2 stream —|SSE2 storer _|SSE.2 store —|SSE2 storel —|Avx2 maskstore SSE4 1| extract % move SSE |movelh/hl %'lnsertflzg SSSE3| alignr SSE2 | shuffle SSE2 |Shufflehl/7o SSSE3| shuffle
si32-128,pd, ps[SSE], pd, ps [SSE] s1128,pd, ps[SSE], pd, ps [SSE] ps/d,epi32-64 [AVX2] epil6[SSE2], SSE 3 256 7 8 132 I 3
51256 [AVX] NOTE: Stores the elements 51256 [AVX] NOTE: Stores a float to 128 NOTE: Stores bytes from a epis-64,ps L h] '|S = e — — b b
: : - : L NOTE: N - - " 14 7 i a,m b1 -) T . N - " o
NOTE: Stores 128-bits (or 32- from the register to memory NOTE: Stores 128-bits into bits of memory replicating it into memory at p if the NOTE: Extracts one element elgmen?/lffc\)lgsftirset iﬁwjftand NOTE: IThe 1: \1?I’Slen_ NOTF' Insert§ .128b't ?t a mi alignz epi8 (mi a mIb*l c mi shuffle epi32(mi a,ii i) NOTE: Shuffle_s the h_gh/low .NOTE' Shufﬂe pac(lj(_ed 8-bit
64) for 513264 integer a in reverse order. Memory oMo Memamy ocation two (pd) or four (ps) times. corresponding byte in the and returns it as a normal int fl o Pt moves lower half of b into position specified by i. For ((@ << 128) | b) >> c*8 S(s, mask){ half of the register using an integers in a according to
into memory using a non- must be aligned! X bY- " dly Memory location must be mask m has its highest bit (no SSE register!) fl S remamgg e e{“ffn S upper half of result. Rest is AVX2, there is c_mly_51256 CASE (mask[1:0]) immediate con_trol mask._ shuffle cont_rol ma_sk in the
temporal hint to minimize must be aligned! aligned! set. Memory must be T oot epil6(n 5l D) rom second inpu filled from a. The h1 version and the operation is named R troe Rest of the register is copied corresponding 8-bit element
cache pollution. Memory v storer pd(d* ptr,md a) S store @ prrmd 3 . aliénedl sctr. .—ef: o m move_ss(m a,m b) moves upper half to lower insertil28. 128—b|t Dual from input. of b, and store the results in
location must be aligned! pd (d* ptr, v _storel pd(d* ptr,md a) - (8>>(1[2:0]*16)) [15:0] al31:0] | b[127:32] half. m insertfl28 ps Register Shuffle mi shufflehi epil6 dst.
_ _ v 2 ps (£* p,mi m,m a) b,ii 1) g i Tl i shuffl i8 (mi ib
v stream si32(i* p,i a) m movehl ps(m a,m b) d(:t?ér;!') b:]"l + 1255:0] [256] (mi a,ii i) nF‘é; A eo_etp: 1(5m1 a,mi b)
—— ; : . : =a : AVX dst[63:0] := a[63:0 J =
v _stream si128 (mi* p,mi a) 256bit Extract sel := i*128 :Izwxz permute2£128 dsthm}” al63:0] i %8
dst[sel+l5:sel]:=b[127:0] ps/d, 51256 @ > (i[1:0 IF b[i+7] =
AVX NOTE: Takes 2 registers and dst[95:80] Eﬁg[lﬂzl] =0
. Storing data to a memory address which does —| extractfl28 . . ; (@ >> (1[3:2 . .
Unallgned Store not have to be aligned to a specific boundary AVX2 - Dual Reg|ster :huffltes 128(bItEChuhnk;toka dst[111:96] := k 1= bli+3:1]*8
51256,ps/d arget register. tach chunt (@ >> (1[5:4]%16)) [79:64] dst[i+7:1]:= a[k+7:k]
i i ; NOTE: Extracts 128bit and Float Shuffle e B ey ot dst[127:112] :=
: in the mask. For , there i :
Unaligned St High Single Element Masked St 128bit Pseudo e s Toa s Jebir Sor Blend <z is only the 3256 version o 2> 4 17:61416)) [79:64]
ore |g asKe ore register. For AVX2, there is Interleave S555 shuffle which is renamed to Float Shufﬂe
Store [iz8] StO re [iz8| [SEoT] Scatter Z58| only s1256 and tze T 5SISSE], pd permute2x128.
SSE SSE - operation is name [SSE4 . 1] ’ .
W' storeu SSE2 | storeh W' store[l] SSE2 | maskmoveu AVX | storeu? extractil2g. (Unpack) AVX2 bﬁelrsld [v] NOTE: Shuffles floats from "(f[idpzmn'ét;zﬁzif AVX |pennute[var] 4x64bit 8x32bit
> - - - - i , ,
5116-128, pd, ps [SSE], pd 55 [SSE], sd, epi6d sil2s m128,m128d, m1281 e SReractiize ps sse2 [unpackhi/ 1o epi}ir[);VXZ] 1ps/d ofthe cesylt receres vattes | [S(eLs =2, contro) ps/d Shuffle 58]
i2 AVX . i i N N = a,ii i . d ! .
51256 [2 1 !\IOTE. Stores the high 64bits .NOTE: Stores the low ele__'ment NOTE: St_ores bytes into) NOTE: Stz_)res two 128bit (a >> (1 * 128))[128:0] epi8-64,ps[SSE], pd NOTE: blendv uses 128bit from the first register. The 0: u(rgo[?;%[l 2]1)[127,0] NOTE: 128-bit version is the 256 Sh Ufﬂe 56|
NOTE: Stores 128 bits (or into memory. into memory. The 1 version memory if the corresponding elements into two memory mask, blend uses upper part receives values 1. 127:0] +=s1[255:128 same as int shuffle for floats. AVX2 | permute4x64
less for the si16-64 versions) v storeh pd(v* ptr,m a)| |must be used for epi64 and byte inmask has its highest locations. NOTE: Interleaves elements immediate from the second register. > Urph27:o 722 %127:0]] 256-bit version performs the - AVX2 |pe](mutevar8x32
into memory. can be used for pd. bit set. v storeu2 ml28 from the high/low half of - - Shuffle mask is an : twl127: : same operation on two 128- epibd, pd -
1 (£* p, £* q,m a) two input registers into a mi blend epilé immediate! 3: tmp[127:0] :=s2[255:128]] ol p g | . NOTE: Same as float shuffle epi32, ps
v storeu pd (v* ptr,m a) v store sd(d* ptr,md a) v maskmoveu_s:|_128 = ’dst [’127 .01; target register. (mi a,mi b,ii imm) i IF control[3] it ane§. e nprma version b : oat s NOTE: S %64 bi
(mi a,mi mask,c* ptr) p _ 1ok FOR j :=0 to 7 md shuffle pd tmp[127:0] =0 uses an 'r,nmed'at_e and the ut no [var] version is : Same as 4x .'t
’ ’ *q = dst[255:128]; vy : 132 (i oy b) 52 5x16 (md a,md B,4i i) RETURN trp [127:0] var version a register b (the available. In addition, the shuffle but with 8lx32b|t.and
dst[31:0] a[95:64] IF.j_mm[j] dst[6’3:0] ': (i[0] = 0) ?) lowest bits in each element shuffle is performed over the only a [vlar] version taking a
dst[63:32] := b[95:64] dst[i+15:1] := b[i+15:1] al63:0] : al[127:64] dst[127:0] in b are used for the mask of If“” 256fb" '”;.‘ead of two egister instead ".f an
dst[95:64] := a[127:96]| | Esm dst[127:64] = (i[1] = 0) 2| |ast[255:128] that element in a). anes of 128 bit. immediate is available.
dst[127:96] := b[127:96] dst[i+15:1] := a[i+15:i] b[63:0] : b[127:64] dst[MAX:256] :=0 m permutevar_ps(m a,mi b) md permutedx64 pd(md a,ii i) m permutevar8x32 ps (m a,mi b)
. Replicating one element in a register
Byte Zeroing Broadcast tofithe entire register Byte Movement
. Zero All 64-bit Byteshift
; Zero Register Regi Broad Broadcast left/rich
Specials _ egisters g roadcast eft/right
E]
22| setzero ax | zeroall sse3 | movedup | [a»2[broadcastx sse2 [[b]s1/rli
H H H . - d epiB8-64,ps/d, si256 si128,epil28[256]
ps[SSE]/d,sil28 D!
SpECIaI AIgO rithms Transactional NOTE: Zeros all SSE/AVX NOTE: Duplicates the lower NOTE: Broadcasts the NOTE: Shift input register
- - NOTE: Returns a register registers. half of a. lowest element into all slots left/right by i bytes while
AES KeyGen AES |nverse M 1X CyCIlC Redundancy M emo ry with all bits zeroed. v zeroall() md movedup_pd (nd a) of the result register. The shifting in zeros. There is no
. AES Encrypt AES Decrypt mi setzero sil28() a[0:63]] (a[63:0]<<64) | | 5i256 version broadcasts one difference between the b
Assist 78] Columns 78] 73] [ize] Check (CRC32) : = 128bit element! The letter X and the non-b version.
55 g 8 178 [Zed] Comm|t must be the following: T berli 51128 (o TR
N N . Q- i . i . mL rll si. mL a,11 1
AES |aeskeygerla5515t AES | aesimc AES |aesenc [last]| | aes |aesdec[last] SSE4-2| crc32 Transaction 32-bit Broadcast Zg;gfée&'}g ;’a:eg'”'d/ = .
- - T n _ H H H i256: 51128
51128 51128 . 51128 51128 u.8 u§4 __ 3 Zero ngh ZerO ngh A” ngh/LOW si si
NOTE: Assist in expanding the NOTE: Performs the inverse NOTE: Perform one round of NOTE: Perform one round of NOTE: Starting with the initial _Xen mi broadcastb epi8 (mi a)
AES cipher key by computing mix columns transformation an AES encryption flow on the an AES decryption flow on the value in crc, accumulates a _ 28 Reglste rs SSE3 |move 1/ hdup Byte SWa p
steps towards generating a on the input. state in a using the round state in a using the round CRC32 value for unsigned X- - SSE2 | move 256
round key for encryption cipher | [i aesimec sil28(mi a)| | key.The last version key.The last version bit integer v, and stores the NOTE: Specify the end of an - o | ps <64
using data from a and an 8-bit = performs the last round. performs the last round. result in dst. RTM code region. If this epiéd Zeroupper NOTE: Duplicates 32bits into x86 | bswap [64]

the lower 64bits of the
result. 1 version duplicates
bits [31:0], h version
duplicates bits [63,32].

m moveldup ps(m a)

NOTE: Moves lower half of -

input into result and zero NOTE: Zeros all bits in
remaining bytes. [MAX:256] of all SSE/AVX
registers.

(132,164)
NOTE: Swaps the bytes in
the 32-bit int or 64-bit int.

i64 bswap64 (i64 a)

mi move epi64 (mi a)
a[63:0]

v zeroupper ()

The n version is a not
version, e.g., neq computes
not equal. Elements that
compare true receive 1sin
all bits, otherwise Os.

md cmpeq_pd (md a,md b)

to 1 if both elements are not
NaN, otherwise 0.
cmpunord sets bits if at
least one is NaN.

imm. Possible values are 0-31
(check documentation).
Elements that compare true
receive 1s in all bits,
otherwise 0s.

Returns a single int that is
either 1 or 0. The u version
does not signal an exception
for QNaNs and is not
available for 256 bits!

md cmpord pd (md a,md b)

md amp pd(md a,md b, ii imm)

i comieq sd(mi a,mi b)

FOR j := 0 to 3
IF imm[j] mi madd epil6 (mi a,mi b)
dst[i+31:1] :=sum[31:0] -
ELSE i
dst[i+31:i] =0 k := a offset+i
1 :=Db offset
mi sad epu8 (mi a,mi b) dst[i415:1] :=
ABS (a[kt7:k]D[1+7:1])+
PBS (a[k+15:k+8] b [1+15:1+8])+
PBS (a[kt+23:k+16] b [1423:1+16])
PBS (a[k+31:k+24] o [1+31:1424])
Fused Multiply and Add
FM-Add FM-Sub FM-AddSub FM-SubAdd
N £ (nimadd | [N £ [nimadd | [N fmaddsub | |8l fmsubadd
ps/d,ss/d ps/d,ss/d ps/d,ss/d ps/d,ss/d
NOTE: Computes (a*b) +c NOTE: Computes (a*b) -c NOTE: Computes (a*b) +c NOTE: Computes (a*b) -c
for each element. The n for each element. The n for elements with even index for elements with even index
version computes - (a*b) +c. version computes - (a*b) —c. ar]d (a*k?) -c for elements aqd (a*}?) +c for elements
 fmadd ps (m a,m b,m) m fmsub ps (m ,m b,m o) with odd index. with odd index.
m fimsubadd ps (m a,m b,m c)
Comparisons
Float Compare Int Compare
Float Compare Not Compare
Compare . Int Compare
Compare NaN = Single Float
sse2 | cmp [n] 7 | | sse2 Jemp [un]ord| [[avx | cmp sse2 | [u]comiZ sse2 | cmpZ
ps/d,ss/d ps/d,ss/d ps/d,ss/d ss/d epiB8-32,epi64 [SSE4.1]
NOTE: Z can be one of: NOTE: For each element pair NOTE: Compares packed or NOTE: Z can be one of: NOTE: Z can be one of:
ge/le/lt/gt/eq cmpord sets the result bits single elements based on eq/ge/gt/le/1t/neq 1t/gt/eq.Elements that

equal receive 1s in all bits,
otherwise Os.

mi cmpeq epi8 (mi a,mi b)

Bit Compare

Perform a bitwise operation and check whether all bits
are Os afterwards

String Compare

Test And Not/

Test Mix Ones

Test All Ones

String Compare Description

processor was not already in
transactional execution, then it

reflect an XABORT instruction
caused the abort, and the imm

parameter will be provided in transitions into transactional

Set MXCSR

v mwait (u ext,u hints)

Register

v monitor (v* ptr,u e,u h)

execution. On an RTM abort,
the logical processor discards
all architectural register and

memory updates performed

bits [31:24] of EAX. Following
an RTM abort, the logical
processor resumes execution
at the fallback address

SSE | setcsr

computed through the during the RTM execution,

si128[SSE4.1],
5i256,ps/d

Si128[SSE4.1],
s1256,ps/d

NOTE: Compute the bitwise

NOTE: Compute the bitwise
AND of 128 bitsina and b,

outermost XBEGIN instruction.

restores architectural state,

v _xabort (ii imm)

NOTE: Set the MXCSR register
with a 32bit int.

v setesr (u a)

and starts execution beginning
at the fallback address
computed from the outermost
XBEGIN instruction.

u _xbegin ()

AND of 128 bits in a and b, and
set ZF'to 1 if the result is zero,
otherwise set ZFto 0.
Compute the bitwise AND NOT
of aand b, and set CF'to 1 if
the result is zero, otherwise
set CF'to 0. The c version
returns CFand the z version
ZF. For 128 bit, there is also
test_all zeroswhich does
the same as testz si128.

i testc sil28(mi a,mi b)

ZF = ((a & b)
CF := ((a & 'b)
RETURN CF;

and set ZF'to 1 if the result is
zero, otherwise set ZF to 0.

NOTE: Returns true iff all bits
in a are set. Needs two
instructions and may be
slower than native
implementations.

Compute the bitwise AND
NOT of a and b, and set CFto

i test_all ones(mi a)
(~a)

1 if the result is zero,
otherwise set CF to 0. Return
ICF && !ZF. For 128 bit,
there is also the operation
test mix ones zeros which
does the same.”

i test mix ones zeros
(mi a,mi b)~ T
:= ((a & b)
= ((a & !'b)
ICF && !ZF;

0)

1b. The immediate value i for

cmpistrX(mi a, mi b, ii i)
And Zeros el [zl cmpestrX(mi a, i la, mi b, i 1b, ii i)
SSE4.1 SSE4 .1 test ncz Each operation has an i and an e version. The i version compares
AVX teStC/ Z AVX _ ESESEE] test_all ones all elements, the e version compares up to specific lengths 1a and

all these comparisons consists of

bit flags. Exactly one flag per group must be present:

Data type specifier

SIDD_UBYTE_OPS

unsigned 8-bit chars

DD UWORD OPS

unsigned 16-bit chars

~SIDD_SBYTE OPS

signed 8-bit chars

SIDD SWORD OPS

signed 16-bit chars

Compare mode specifier

For

each character cin a, determine

_SIDD_CMP_EQUAL_ANY

iff any character in b is equal to c.

IDD_CMP_RANGES

For each character cin a, determine

whetherb0<=c<=blorb2<=c<=b3...

SI
—SIDD_OMP_EQUAL _ORDERED

Check for string equality of a and b

_SIDD_CMP_EQUAL EACH

Search substring b in a. Each byte where

b begins in a is treated as match.

Polarity specifier

SIDD POSITIVE POLARITY

Match is indicated by a I-bit.

~SIDD NEGATIVE_POLARITY

Negation of resulting bitmask.

_SIDD_MASKED_NEGAT
IVE_POLARITY

Negation of resulting bitmask
except for bits that have an index

larger than the size of a or b.

String Compare

String Compare

String

String Compare

String

Mask Index Compare with Nullcheck Nullcheck
SSE4-2|cmpi/estrm ssz4.2|cmpi/estri SSE4.2|cmpi/estrc SSE4-2|cmpi/estra ssm.z|cmpi/estrs/z
ps/d,ss/d ps/d,ss/d ps/d,ss/d ps/d,ss/d ps/d,ss/d

NOTE: Compares strings a and
b and returns the comparsion
mask. If _SIDD BIT MASKis
used, the resulting mask is a
bit mask. If SIDD UNIT MASKis
used, the result is a byte mask
which has ones in all bits of
the bytes that do not match.
mi ampistmm(mi a,mi b, ii 1)
mi cmpestrm

(mi a,i la,mib,ilb,ii i)

NOTE: Compares strings in a
and b and returns the index
of the first byte that

matches. Otherwise Maxsize

NOTE: Compares strings in a
and b and returns true iff the
resulting mask is not zero,
i.e., if there was a match.

NOTE: Compares strings in a
and b and returns true iff the
resulting mask is zero and
there is no null character in b.

NOTE: Compares two strings
aandband returnsifa (s
version) or b (z version)
contains a null character.

is returned (either 8 or 16
depending on data type).

1 cmpistri (mi a,mi b, 11 1)

i ampistrc (mi a,mi b,ii i)
i cmpestrc
(mia,ila,mib,ilb,ii i)

i cmpistra(mi a,mi b,ii i)
i cmpestra
(mia,ila,mib,ilb,iii)

i ampistrs (mi a,mi b,ii i)
i cmpestrs

(mia,ila,mib,ilb,iii)

i cmpestri

(mia,ila,mib,ilb,iii)

	SSEHierarchy-v2.1-large.vsd
	Page-1

